## Estimation of sampling and analytical uncertainties using Excel's 2-Way ANOVA with replications

In the previous blog <u>https://consultglp.com/2018/08/22/a-worked-example-of-measurement-uncertainty-for-a-non-homogeneous-population/</u>, , we used the basic ANOVA principles to analyze the total chromium Cr data for the estimation of measurement uncertainty covering both sampling and analytical uncertainty.

This article wants to show how you can make use of the Excel spreadsheet Data Analysis add-in to solve the similar issue, as it will save a good deal of your effort in various calculations.

As the previous study was about the duplicate analysis of duplicate samples from 10 random positions of a non-homogeneous polluted site, we shall choose "Anova Two-Factor with Replication" tool from the Excel spreadsheet list box when we select Data Analysis on the Ribbon's Data tab for our data evaluation.

It may be noted that this tool is intended for the sort of balanced two-factor design with *similar* number of replication of laboratory analysis. See Figure 1.

| Figure 1:  | Selection of | of ANOVA  | method | from | the | dialog | box o | of the |
|------------|--------------|-----------|--------|------|-----|--------|-------|--------|
| Excel Data | a Analysis ' | Tool Pack | age.   |      |     |        |       |        |



To suit the Excel's spreadsheet default settings, you need to present our data in the following format as shown in Table 1.

|   |                        |         |        |         | and the second se | 191     |         |          |        |         |       |  |  |  |
|---|------------------------|---------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------|---------|-------|--|--|--|
|   | A                      | В       | С      | D       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F       | G       | Н        | 1      | J       | K     |  |  |  |
| 1 | Excel Two-Factor ANOVA |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |          |        |         |       |  |  |  |
| 2 | Total chroi            | mium Cr | of dup | olicate | sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es from | 10 diff | ferent l | ocatio | ns of a | field |  |  |  |
| 3 |                        | А       | В      | С       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E       | F       | G        | н      | 1       | J     |  |  |  |
| 4 | S1-A1                  | 134     | 245    | 65      | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 345     | 311     | 222      | 145    | 286     | 326   |  |  |  |
| 5 | S1-A2                  | 148     | 231    | 78      | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 340     | 289     | 245      | 120    | 272     | 336   |  |  |  |
| 6 | S2-A1                  | 165     | 265    | 45      | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 345     | 267     | 243      | 115    | 226     | 321   |  |  |  |
| 7 | S2-A2                  | 155     | 276    | 59      | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 356     | 288     | 256      | 121    | 242     | 297   |  |  |  |
| 8 |                        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |          |        |         |       |  |  |  |

Table 1: Raw data of total chromium in mg kg<sup>-1</sup> of samples in 10 locations

Figure 2 shows the selection of data input in the Input Range cell with an entry of "2" keyed in the "Row per sample" cell as there are duplicated analysis done on each sample. After selecting the output range, the two-factor ANOVA outputs are shown in Figure 3.

**Figure 2: A screen shot of Anova Two-Factor with Replication dialog box.** (*Take note that some care has to be taken in the layout of raw data as shown in Figure 1 for use with this ANOVA tool.*)

| nput                     |               | OK           |
|--------------------------|---------------|--------------|
| Input Range:             | \$A\$3:\$K\$7 | ▲ OK         |
| <u>R</u> ows per sample: | 2             | Cancel       |
| <u>A</u> lpha:           | 0.05          | <u>H</u> elp |
| Output options           |               |              |
| Output Range:            | \$A\$9        | Ť            |
| O New Worksheet Ply:     |               |              |
| O New Workbook           |               |              |

You might have noticed that there is no Labels in First Row check box in the dialog box shown in Figure 2. That is because you do not have a choice. The Input Range specified *must* include both row and column labels. That means, as the raw data set is laid out in Figure 1, you must specify the range : \$A\$3:\$K\$7 in the Input Range.

After selecting the locations where you want the output to start in the Output Range of Figure 2 and clicking "OK" to run the tool, the two-factor ANOVA results are a shown in Figure 3.

## Figure 3: The outputs of Excel two-factor with replication on the total chromium Cr results from 10 locations of a field

| Excel Two-Factor ANOVA<br>Total chromium Cr of duplicate samples from 10 different locations of a field |             |        |        |        |            |        |        |        |        |      |        |
|---------------------------------------------------------------------------------------------------------|-------------|--------|--------|--------|------------|--------|--------|--------|--------|------|--------|
|                                                                                                         | А           | В      | С      | D      | E          | F      | G      | Н      | 1      | J    |        |
| S1-A1                                                                                                   | 134         | 245    | 65     | 202    | 345        | 311    | 222    | 145    | 286    | 326  |        |
| S1-A2                                                                                                   | 148         | 231    | 78     | 218    | 340        | 289    | 245    | 120    | 272    | 336  |        |
| S2-A1                                                                                                   | 165         | 265    | 45     | 186    | 345        | 267    | 243    | 115    | 226    | 321  |        |
| S2-A2                                                                                                   | 155         | 276    | 59     | 165    | 356        | 288    | 256    | 121    | 242    | 297  |        |
| Anova: Two-Factor With Replication                                                                      |             |        |        |        |            |        |        |        |        |      |        |
| S1-A1                                                                                                   |             | 2      | -      |        | -          |        | •      |        |        | -    | . etai |
| Count                                                                                                   | 2           | 2      | 2      | 2      | 2          | 2      | 2      | 2      | 2      | 2    | 20     |
| Sum                                                                                                     | 282         | 476    | 143    | 420    | 685        | 600    | 467    | 265    | 558    | 662  | 4558   |
| Average                                                                                                 | 141         | 238    | 71.5   | 210    | 342.5      | 300    | 233.5  | 132.5  | 279    | 331  | 227.9  |
| Variance                                                                                                | 98          | 98     | 84.5   | 128    | 12.5       | 242    | 264.5  | 312.5  | 98     | 50   | 7772   |
| \$2-A1                                                                                                  |             |        |        |        |            |        |        |        |        |      |        |
| Count                                                                                                   | 2           | 2      | 2      | 2      | 2          | 2      | 2      | 2      | 2      | 2    | 20     |
| Sum                                                                                                     | 320         | 541    | 104    | 351    | 701        | 555    | 499    | 236    | 468    | 618  | 4393   |
| Average                                                                                                 | 160         | 270.5  | 52     | 175.5  | 350.5      | 277.5  | 249.5  | 118    | 234    | 309  | 219.65 |
| Variance                                                                                                | 50          | 60.5   | 98     | 220.5  | 60.5       | 220.5  | 84.5   | 18     | 128    | 288  | 8073.2 |
| Total                                                                                                   | 9           |        |        |        |            |        |        |        |        |      |        |
| Count                                                                                                   | 4           | 4      | 4      | 4      | 4          | 4      | 4      | 4      | 4      | 4    |        |
| Sum                                                                                                     | 602         | 1017   | 247    | 771    | 1386       | 1155   | 966    | 501    | 1026   | 1280 |        |
| Average                                                                                                 | 150.5       | 254.25 | 61.75  | 192.75 | 346.5      | 288.75 | 241.5  | 125.25 | 256.5  | 320  |        |
| Variance                                                                                                | 169.67      | 404.92 | 187.58 | 512.92 | 45.667     | 322.92 | 201.67 | 180.25 | 750.33 | 274  |        |
|                                                                                                         |             |        |        |        |            |        |        |        |        |      |        |
| ANOVA                                                                                                   |             |        |        | -      | - <i>1</i> |        |        |        |        |      |        |
| ource of Variatio                                                                                       | c <u>SS</u> | df     | MS     | F      | P-value    | F crit |        |        |        |      |        |
| Sample                                                                                                  | 080.63      | 1      | 080.63 | 5.2026 | 0.0337     | 4.3512 |        |        |        |      |        |
| Columns                                                                                                 | 292589      | 9      | 32510  | 248.5  | 2E-18      | 2.3928 |        |        |        |      |        |
| Mithin                                                                                                  | 2616 5      | 9      | 120.02 | 4.9707 | 0.0014     | 2.3928 |        |        |        |      |        |
| WICHIN                                                                                                  | 2010.5      | 20     | 130.03 |        |            |        |        |        |        |      |        |
| Total                                                                                                   | 301739      | 39     |        |        |            |        |        |        |        |      |        |

3

It is noted that the Excel's outputs show exactly the same answers on "Columns (Locations)", "Within" and "Total" sources of variations, as those presented in the last blog based on the first ANOVA principles. By adding the figures of "Sample" and "Interaction" together, they return precisely the same results as the "Between-samples" calculation made in the last blog.

The MS(within samples) is the standard uncertainty in laboratory analysis. The approach in the evaluation of measurement uncertainty covering both sampling and analytical uncertainties that follows is exactly the same as shown in the previous article.

To conclude, you will certainly agree with me that this approach illustrated is much faster but it is still beneficial to learn the basic ANOVA principles first before indulging in this quicker method.