A worked example to estimate sampling precision &
measurement uncertainty

Nearly all analysis requires the taking of a sample, a procedure which itself
introduces uncertainty into the final test result. Hence a measurement
uncertainty should cover both the uncertainties of sampling and analysis.

The following worked example quantifies the variance associated with sampling
with particular reference to its precision due to random error.

Suppose that we need to take a number of soil samples from a contaminated
site for the analysis of cadmium contents through a completely random
sampling process and then analyse them in duplicate in also a completely
random order. The results are summarized in Table 1.

As soil is often very heterogeneous in nature, we can safely expect the samples
drawn are different. We want to know by how much they differ. Hence, we are
not really interested in a significance test. The design of experiment is
schematized in Figure 1.

Figure 1: An simple split experimental design for sampling and analytical
variance
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Table 1: The Cadmium results (in ppm) of 10 random samples taken from

a field (ref: Michael Thompson & Philip Lowthian, page 58)

Soil
sample 1 2 3 4 5 6 7 8 9 10
Result1 | 11.8 6.4 11.9 12.2 7.5 6.4 10.1 11.3 14.0 16.5
Result2 | 9.8 6.3 10.3 10.2 7.3 6.4 10.0 9.9 12.5 15.1
Mean= | 10.8 | 6.35 11.1 11.2 7.4 6.4 10.05 10.6 13.25 | 15.8

One-way ANOVA technique can be applied in this case. We shall look into its
within- and between-sample variations.

Estimation of Within sample (analysis) variance

In this case, we have n=10 number of samples with duplicate results (k = 2) for
each sample. The grand mean of the data, X is 10.295 ppm.

The deviation (D;) of result 1 of sample i from the mean value of sample i is:

Diy = (xi1 — %;)
Also, the deviation (D;,) of result 2 of sample i from the mean value of sample i
is

Dip = (X2 — %;)
In fact, D;; = D;,. Therefore, the sum of squares of deviation (error) for sample
iis:

SSE;=(x;1 — %)%+ (x;, — %)% = 2(x;1 — %;)°

Hence, the total sum of squares of analysis error (within-sample) for all the 10
samples are:

§S,, (analysis) = Y12, SSE;

In this worked example, SS.(analysis) = 8.395, whilst the degree of freedom for
within sample (between-analysis) = nxk-n=10x2 - 10 = 10.

Therefore the mean square of analysis error MS,.(analysis) = 8.395/10 =
0.8395.



Estimation of between-sample variance

To estimate the variation between samples, we study the deviation square D’of
the mean value of each sample from the overall or grand mean value, x.

Sample | D(Mean)
Sample, i Mean
il Squares
1 10.8 0.255
2 6.35 15.563
3 11.1 0.648
4 11.2 0.819
5 7.4 8.381
6 6.4 15.171
7 10.05 0.060
8 10.6 0.093
9 13.25 8.732
10 15.8 30.305
Grand Mean X 10.30

The sum of deviation squares of the above data = 80.0273 whilst the replicate k&
=2. Hence, the sum of squares (Between-samples) is:

SS, = 31 k(% — X)% = 160.055

As there are 10 samples under consideration, the degree of freedom between-
samples therefore is (10-1) or 9.

SSp

—=17.784
dfp

The mean square of between-samples MS, =

Significance F-test evaluation

MSy
F=—
MS,

w

=21.18 which is larger than the critical value Fu=0.0svi-9v2-10 of 3.02,

indicating the samples under study were significantly different.

Indeed, the above values of MS,, and MS, are confirmed by the MS Excel® Data
Analysis tool as shown below:



Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance
Soil 1 2 21.6 10.8 2
Soil 2 2 12.7 6.35 0.005
Soil 3 2 22.2 11.1 1.28
Soil 4 2 22.4 11.2 2
Soil 5 2 14.8 7.4 0.02
Soil 6 2 12.8 6.4 0
Soil 7 2 20.1 10.05 0.005
Soil 8 2 21.2 10.6 0.98
Soil 9 2 26.5 13.25 1.125
Soil 10 2 31.6 15.8 0.98
ANOVA
Source of Variation SS df MS F P-value F crit
Between Samples  160.0545 9 17.78383 21.18384 2.26552E-05 3.020383
Within samples
(between analysis) 8.395 10 0.8395
Total 168.4495 19

Estimation of measurement uncertainty

From the above mean squares, we calculate the analytical standard deviation s,
as:

Sq =+/MS,, =v0.839 = 0.92 ppm

The sampling standard deviation ssis given by:

_ 17.78-0.84
Sg = \/Msb MSW=\/ 772 =2.91 ppm

k

(Note that k = 2 because we did duplicate analysis.)

The total standard deviation for a combined operation of sampling (random)
and analysis is going to be:

Stotar = \/S% + 52 =v2.91%2 + 0.922 =3.05 ppm



Remarks
The uncertainty of sampling bias, if any, was not considered in this case.

In fact, sampling bias is a contentious subject with many supporters and
opponents. Some claim that sampling bias does not exist as the sampling
protocols must have been agreed upon between the sampler and the customer.
This implies that the sampling method is akin to an empirical analytical
method, tailored to the fact that the sampling method defines the measurand
or the analyte of interest.

But, in reality, sampling bias could arise like in this worked example. As the site
was contaminated, the sampling tools might contaminate the samples taken if
no proper precautions were taken to ensure their cleanliness. The sampler at
site might possibly misinterpreted the sampling protocols and made systematic
error in the sampling process.
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