A linear regression approach to check

bias between methods - Part |

Linear regression is used to establish a relationship between two variables. In
analytical chemistry, linear regression is commonly used in the construction of
calibration curve for analytical instruments in, for example, gas and liquid
chromatographic and many other spectrophotometric analyses. In these cases,
we work on a linear relationship within a certain range between the analytical
responses and the concentration of the analyte of interest.

The general equation which describes a fitted straight line can be written as
y=a+ bx

where b is the gradient of the line and g, its intercept with the y-axis. The
method of least-squares linear regression is used to establish the values of a
and b. The ‘best-fit’ line obtained from least-squares linear regression is the
line which minimizes the sum of the squared differences between the
experimental (observed) and fitted values for y.

The signed difference between an observed value () and a fitted value () is
known as a residual, i.e. (y; —9; ). The common form of regression is of y on x,
which means an assumption that the x values are known exactly (no
uncertainty) and the only error occurs in the measurement of y.

In this article, we want to compare the results of two analytical methods for any
bias between them by using the linear regression approach. This approach can

also be applied to evaluate two sampling methods for any sampling bias, one of
which is a reference or well established method.

The linear regression approach is safe as long as the variance of the
independent (x) variable is somewhat smaller than that of the dependent (y)
variable, because the basic assumption of regression (invariant x-values) cannot

be violated. Hence, one of the analytical methods studied must be sound, such
as standard or reference method with good precision.

We can study the bias between two analytical methods by using the approach
modelled through linear regression in paired experiments. In this case, we use
both methods to analyze the same set of test materials and then to compare
their results.



There are actually four possible outcomes of such experiments, as shown

graphically in Figures 1 - 4 below.
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Figure 1: If both methods gave
almost identical results (i.e., apart
from random measurement
variations), we should get a trend
of results following the ideal model
y = x where gradient b=1 and y-

intercept, a = 0.

Figure 2: This dataset shows the
gradient b was almost 1 but its y-

intercept, a = 0. This type of
bias is called ‘constant’ or
‘translational’ bias, and is quite
commonly associated with
baseline interference in analytical
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Legends:
the regression line

the theoretical line of no bias
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To evaluate any significant difference between the two methods, we can carry
out significance Student’s 7-test by testing the null hypothesis Ho: a = 0 vs

alternate hypothesis Hi: a # 0, and, also Ho: b =1 vs Hi: b = 1.

The application of such test will be appreciated by studying a worked example.



