The basics of probability - Part Ili

Conditional probabilities

Conditional probability is defined as the probability of an event given that
another event has already occurred. It can be thought of as probability
determined in the mode of either “what if” or “given that”

Consider the events A, B and A N B in an experiment with sample space U.

Imagine that we make N independent replications of the experiment and let Ny,
Np and N ans denote the number of times that the three events occur,
respectively.

We will study the relative frequencies of these events:

1. The event A among all the experiments (i.e., N+/N), and
2. The event A among the experiments where B occurred (i.e., Ninz/N5).

For (1) above, the relative frequency approaches the probability of event A as N
tends towards infinity.

For (2), the relative frequency approaches the conditional probability of A given
B, which should be viewed as the probability of A among those outcomes where
B occurs.

Mathematically, if we let A and B be events and assume that P(B) > 0, the
conditional probability of A given B (i.e., that the event A occurs when we
already know that event B has occurred) is symbolized by P(A | B), and is
defined as :

P(A|B) = % 6)

or, upon rearrangement, we have
P(ANB)=P(B).PA|B) (7)
Example 4

Several meat samples were analyzed by a chemical diagnostic kit test for the
presence of E. coli bacteria O157.



Ideally, the test is positive (+) of the bacteria is present in the meat sample and
negative (-) if it is absent. Table 1 below shows the results from such a test on
E. coli bacteria 0157 investigated on samples known to be with bacteria and
another lot of samples without the bacteria:

Table 1: Presence of E. coli: number of positive and negative test results
from samples with and without the bacteria

Positive (+) Negative (-)
Samples with bacteria 57 5
Sample blanks 4 127

So, we see from Table 1 that the test is not perfect. It is obvious that we
sometimes incorrectly identify samples as positive although they do not have
the bacteria, and to some cases, we also fail to identify the bacteria in samples
where it is present.

We shall use the following two conditional probabilities to describe the test:
P (positive | bacteria) = 1 - P (negative | bacteria)
P (positive | no bacteria) = 1 - P (negative | no bacteria)
Therefore we have two situations:

A false positive result : the event {positive N no bacteria} when a sample
without bacteria is identified as positive.

A false negative result : the event {negative N bacteria} where a sample with
bacteria has been tested negative.

From the above example, therefore, we have 4 false positives and 5 false
negative.

Now, the sensitivity of the test method is defined by the probability P (positive |
bacteria). It is the probability that the diagnostic test will show correct result
(i.e., that the test is positive) if bacteria are indeed present in the sample.

P (negative | no bacteria) is called specificity. It is the probability that the
diagnostic test will show the negative result if bacteria are not present in the
sample. Of course, we prefer the diagnostic tests are highly sensitive and have
high specificity.



So, from Table 1, we estimate the sensitivity to 57/61 = 0.93 and the specificity
to 127/132 = 0.96.

Bayer’s theorem

We can use the Bayer’s theorem to “invert” the conditional probability. If we
know the conditional probability P (B| A) and the two marginal probabilities
P(A) and P(B) which are all greater than 0, then we can use the following
formula to calculate the inverse conditional probability P (A | B):

P(B| A)P(A4
P(4| B) = (B| A)P(4) ®)
P(B)
Again we can generalize a situation where there are k disjoint sets, Aj, ...., A,

such that AU A, U... U Ax = sample space U whilst we already have observed
event B.

Example 5

Let the Ai’s denote different possible disease types and let B be an event
corresponding to certain symptoms, such as fever or rash. The conditional
probabilities P (B | Ai) are the probabilities of the symptoms for individual with
disease Ai.

We can then calculate P (Ai | B) for the different diseases so we can provide the
best possible diagnosis, i.e. telling which disease is most likely given the
symptoms we observe.

Let’s use a generalized version of Bayer’s theorem and the law of total
probability as shown below.

If AijUAxU... UAx=U, and P (Ai) > O for all i, for any event B, we have the law
of total probability

P(B)=P (B |Ai) P(Ai)+....+ P(B| Ax) P (Ax) (9)
and if P (B) > 0, we have the generalized Bayer’s theorem:

P(B| 4)P(4,)

P(4,[B)= P(B| A)P(A)+...+P(B| 4)P(4,)

(10)



Independence and dependence

Two events, A & B, are mutually independent if and only if (under the
probability distribution P)

P(AB) = P(A) and P (B|A) = P (B) (11)
and also if

P(ANB) =P(A).P(B) (12)
Note:
The property (12) is also commonly referred to as the multiplication rule.

When these two events, A & B, are independent, the occurrence of one of the
two events does not change the likelihood or probability that the other of the
two events will occur. On the other hand, if two events A & B are dependent,
then occurrence of one of the two events will alter the likelihood and the
manner in which the other of the two events may occur.

Therefore, independence is an important concept in probability theory and
statistics. In laboratory testing, we understand about how experiments and test
observations can be independent. Now we can use the mathematical concept of
independence to give us a precise meaning to this so-called intuitive
understanding.

Example 6

When we throw two regular dice, we would naturally assume that the result of
one die has no impact on the result of the other die, i.e., that an observed roll
of 6 on the first die would not influence the probability of rolling 6 again on the
second die.

In this experiment, the sample space has 36 elements, one for each
combination of the two dice. If we assign probability 1/36 to each of the
elements, then the outcomes of the two dice are independent. For example,
the probability of rolling 6 on the first die and at the same time rolling 6 on the
second dieis 1/6 x 1/6 or 1/36.

Similarly, rolling at least 5 with the first die and an even number with the
second die is 2/6 x 3/6 = 6/36, corresponding to the 6 possible outcomes
(5,2), (5,4), (5,6), (6,2), (6,4) and (6,6).

In this example, we have equal probability to choose every possible element in
this sample space. We call the probability distribution the uniform distribution.



