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The basics of linear regression 
 

In analytical chemistry, we often come across the desire to describe one 

variable as a function of another variable.  A good example is in the 

preparation of standard calibration curve for instrumental analysis where we 

plot a series of concentrations of working standards against the 

corresponding instrument responses. In some situations we know the 

functional relationship between the two variables based on a known 

theoretical hypothesis, and in other situations, we may have no prior 

knowledge about their relationship but would like to use the observed 

analytical data to identify the relationship. 

 

The simplest relationship model between two quantitative variables, x and y, 

is a simple linear regression, by fitting a linear equation to the observed 

data. The linear equation can be written as: 

 

    y = α + β x             (1) 

 

where α (also known as the intercept) is the value of y when x = 0, and β, the 

slope (i.e. the change in y for each unit change in x, ∆y/∆x).  

 

An important assumption of this relationship model is: one variable is the 

dependent variable (y in the linear equation) whilst the other is an 

independent or explanatory variable (x in the regression formula). 

 

By using this equation (1), we model y as a linear function of x in the hope 

that information about x will give us some information about the value of y.  

 

Example 1. Stearic acid and digestibility of fat 

 

A study of the % digestibility of fat from nine different levels of stearic acid 

proportion in the fat was conducted. Data obtained are shown in the table 

below, where x represents stearic acid and y, the digestibility measured in 

percent.                     

x 29.8 30.3 22.6 18.7 14.8 4.1 4.4 2.8 3.8 

y 67.5 70.6 72.0 78.2 87.0 89.9 91.2 93.1 96.7 

 

The data are scatter plotted in Figure 1. 
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Figure 1: Scatter plot of fat digestibility for different proportions of stearic acid in 

the fat.  

 

Figure 1 shows visually a trend that the stearic acid (x) and the fat digestibility  

(y) are having some sort of linear relationship where for each x-value of stearic 

acid, we have some corresponding y-value.  

 

We may wish to draw a straight line on this scatter plot to represent this 

relationship but obviously this straight line will never fit all the observations 

perfectly. The ‘best’ straight line is of course, to have some of the observations 

above the line and some below, as shown in Figure 2. 

 

  

Figure 2: Fat digestibility for different proportions of stearic acid in the fat with a 

fitted straight line plotted 
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How to fit a regression line? 

 

Fitting a regression line means identifying the “best” line, i.e., the optimal 

parameters to describe the observed data. This best line should be one that runs 

on the scatter plot with “equi-distance” from all the points.  

 

Mathematically, let (xi, yi), i = 1, …, n denotes our n pairs of observations and 

assume that we somehow have “guess-estimates” of the two parameters, 
∧

α  and 

∧

β , from a linear equation used to model the relationship between the x’s and 

the y’s.  

 

Take notice that these 
∧

α  and 
∧

β  indicate that the values are not necessarily the 

true but unknown values of α and β but estimates. Our model for the data is 

given by the line 

    xy
∧∧

+= βα            (2) 

Hence, for any x, we can use this model to predict the corresponding y-value.  In 

fact, we can do so for each of our original observations, x1,….,xn , to find the 

predicted values; i.e. the y-values that the model would expect to find: 

    
ii

xy
∧∧∧

+= βα  

 

To find out how well the model fits to the actual observed values, we can 

calculate the differences between the observed y-values and the predicted y-

values at all x values. These differences or deviations, statistically known as the 

residuals, are defined as follows: 

    
iii yyr

∧

−=            (3) 

Indeed, the residuals measure how far away each of our actual observations (yi’s) 

are from the expected value given a specific straight line model.  Certainly, we 

would like to use a model that provides small residuals because that means that 

the values predicted by the model are close to our observations. 

 

However, if we were to sum up all the ri’s of a given set of x’s and y’s, we would 

have the positive and negative residuals cancel each other and would not know 

the magnitude of the residuals. To overcome this problem, we use the method of 

least squares, where the residuals are squared.   

 

When a residual is large, it means the observed data is far away from the 

predicted value on the ‘best’ regression line. The converse is true. Figure 3 

shows a graphical representation of these squared residuals. 
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The shaded areas correspond to the square of the residuals so each observation 

gives rise to a square shaded area.  Instead of just looking at the sum of 

squared residuals and trying to find a model that is as close to the observations 

as possible, we can try to identify a model that minimizes the sum of these 

squares. So, it is called the least square estimation method. 

 

 

Figure 3: Squared residuals for the dataset on digestibility and stearic acid. 

Shaded areas represent the squared residuals for the proposed regression line. 

 

Least squares estimation 

 

The least squares method estimates the unknown parameters of a model by 

minimizing the sum of the squared deviations between the data and the model.  

Thus, for a linear regression model, we try to identify the parameters α and β 

such that  

    ∑
=

−−
n

i

ii xy
1

2
)( βα          (4) 

becomes as small as possible. To find the maximum or minimum of a function, a 

standard approach is to use the functional differentiation method in calculus. We 

differentiate the function and identify the parameter values for which the 

derivative equals zero. 

 

Let the function be 

    ∑
=

−−=
n

i

ii xyyxQ
1

2
)(),;,( βαβα        (5) 
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The two partial derivatives of this function are: 
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To find the minima of Q, we set these two partial derivatives equal to zero, i.e. 

   0;0 =
∂

∂
=

∂

∂

βα

QQ
 

We now have to solve the two equations (6) and (7) with two unknown, α and β.  

 

It can be shown that there is a unique minimum of equation (4), which means we 

can find a unique line that fits our data best.  We summarize the results above 

as follows: 

 

For a linear regression model, the line that best fits the data has slope (or 

gradient) and intercept given by: 
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____

xy
∧∧

−= βα            (9) 

 

Take note that by “best straight line”, we mean the one that minimizes the 

residual sum of squares. Also, as a consequence of equation (9), we have that 

the best straight line will always go through the point ),(
____

yx since
____

xy
∧∧

+= βα . 

 

So, the least squares estimates of the slope and intercept of our example on the 

digestibility study are found by inserting the data into equations (8) and (9). The 

details are shown in Table 2. 
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Table 2: Calculations for the stearic acid data     

i xi yi 

 
)(

__

xxi −  

 
)(

__

yyi −  

 
2

__

)( xxi −  

 
2

__

)( yyi −  

 
))((

____

yyxx ii −−  

1 29.8 67.5 15.21 -15.41 231.38 237.50 -234.42 

2 30.3 70.6 15.71 -12.31 246.84 151.56 -193.42 

3 22.6 72.0 8.01 -10.91 64.18 119.05 -87.41 

4 18.7 78.2 4.11 -4.71 16.90 22.19 -19.37 

5 14.8 87.0 0.21 4.09 0.04 16.72 0.86 

6 4.1 89.9 -10.49 6.99 110.02 48.84 -73.31 

7 4.4 91.2 -10.19 8.29 103.81 68.71 -84.45 

8 2.8 93.1 -11.79 10.19 138.98 103.81 -120.12 

9 3.8 96.7 -10.79 13.79 116.40 190.13 -148.77 

Sum 131.3 746.2 0.00 0.00 1028.55 958.53 -960.40 

Mean 14.589 82.911           

 

By calculation, we have:  

    934.0
55.1028

40.960
−=

−
=

∧

β  

    533.96)589.149337.0(911.82 =×−−=
∧

α  

Thus, the best regression line for the digestibility data is given by: 

    xy ⋅−= 934.0533.96  

Armed with this best line, we are able to make predictions about the digestibility 

percentage for stearic acid levels that we had not examined in the experiment as 

described in this example.  

 

In the next blog, we shall examine a set of experimental data which do not fit 

into a linear regression model as discussed and shall show how we can deal with 

such situation.   

 

 

 


