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An example of linear regression model after data transformation 

 

We discussed the basics of linear regression in the previous article and 

noted the usefulness of the linear relationship model for variables x 

and y in making a prediction within the range of observed values for 

the explanatory or independent variable x.  

 

However, not every relationship between variables x and y is linear. 

Some experimental data collected may visually appear to have a non-

linear relationship between these two variables. In those situations, the 

linear regression model is inappropriate. In some cases, however, we 

may be able to remedy the situation by transforming the response 

variable in such a way that the set of transformed data shows a linear 

relationship with the explanatory variable x.  

 

Mathematically we let (xi, yi), i = 1, …, n to denote our n pairs of 

observations and assume that a straight line does not reasonably 

describe the relationship between x and y. 

 

By transformation, we look for a function, f, such that the transformed 

variables, zi = f (yi) can be modelled as a linear function of the x’s, i.e.,  
 

    z = α + β x          (1) 

 

For example, in a study of the growth of duckweed (Lemna or water 

lens), which are flowering aquatic plants that can float on or just 

beneath the surface of still water pond, by counting the number of 

leaves every day over a two-week period, the following data were 

collected as shown in the table below: 

 

Day Leaves Day Leaves 

0 100 7 918 

1 127 8 1406 

2 171 9 2150 

3 233 10 2800 

4 323 11 4140 

5 452 12 5760 

6 654 13 8250 

 

If we were to model the growth of duckweed as a function of day, we 

have the following plot: 
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The above plot seems to fit an exponential growth model where the 

population size at time t is given by the formula: 

    )exp()( tbctf ××=         (2) 

In this example, c = 86.095, b = 0.3486, as given by the MS Excel 

calculations. Let’s see if we can validate these data.  

 

The two parameters, b and c, represent the average population 

increase per leave per day and the population size at day zero, 

respectively.  

 

If we take natural logarithms on both sides of equation (2), we get: 

    log ( f(t) ) = log c + b x t         (3) 

          α     β 

 

The equation (3) corresponds to a linear regression model with 

log( f(t) ) as response and t as explanatory or independent variable.  

 

The following figure shows a plot of the logarithm of the number of 

leaves versus time (days) and we see that a straight line fits the data 

almost perfectly.  

 

y = 86.095e0.3486x

R² = 0.9979
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Therefore, we have fitted a linear regression model to the 

logarithmically transformed leaf count and get estimates of: 

    3486.0;4555.4 ==
∧∧

βα  

through the least squares estimation method as described previously. 

We can now back transform these parameters to the original scale by 

the anti-logarithm function : 

    3486.0;099.86)exp( ====
∧∧∧∧

βα bc  

The above results indeed confirm the findings of MS Excel® 

spreadsheet’s calculations.  

 

The interpretation of the growth rate, 3486.0=
∧

β , is that if we have k 

leaves in our population, then on average, we will have 

kkb ×=×
∧

417.1)exp(  leaves in our population the following day.  

 

 

 

 

 

 

y = 0.3486x + 4.4555

R² = 0.9979
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