Practical way to calculate combined uncertainty by MS Excel spreadsheet

Using an ordinary spreadsheet to calculating a combined uncertainty saves a great deal of time and is particularly useful for checking and updating with new data whenever available.

The Eurachem/CITAC Guide (3rd edition) *Quantifying Uncertainty in Analytical Measurement* has given a number of spreadsheet calculation examples. The approach using the MS Excel spreadsheet is summarized as described below.

Assume that the test result y is a function of three input parameters p, q and r, i.e. y = f(p, q, r), such as: $y = (p \times q)/r$.

Let's set up a basic spreadsheet as in Figure 1:

In Figure 1, enter the values of p, q, r and the formula for calculating y in cell A6 of the spreadsheet and the respective values of standard uncertainties u(p), u(q) and u(r) in column B. Copy cell A6 across to C6:E6.

Figure 1: Entries of raw data

	Α	В	С	D	E
1		и			
2	р	u(p)	р	р	p
3	q	u(q)	q	q	q
4	r	u(r)	r	r	r
5					
6	y=f(p,q,r)		y=f(p,q,r)	y=f(p,q,r)	y=f(p,q,r)
7					
8					
Q					

Add u(p) to p in cell C2, u(q) to q in cell D3, and u(r) to r in cell E4 as in Figure 2 below. Upon recalculating the spreadsheet automatically by the software, cell C6 then becomes f(p+u(p),q,r) [denoted by f(p',q,r)], and so are the others.

Figure 2: Entries of individual standard uncertainty contributions

	Α	В	С	D	E
1		и	р	q	r
2	р	u(p)	p+u(p)	р	p
3	q	u(q)	q	q+u(q)	q
4	r	u(r)	r	r	r+u(r)
5					
6	y=f(p,q,r)		y=f(p',q,r)	y=f(p,q',r)	y=f(p,q,r')
7					
8		Diff:	=C6-\$A\$6	=D6-\$A\$6	=E6-\$A\$6
9		Squared Diff:	=C8^2	=D8^2	=E8^2

The row 8 of Figure 2 calculates the difference between the calculated y values in columns C, D and E individually and the originally calculated y value in A6. The row 9 shows the squared differences of columns C, D and E.

To obtain the combined standard uncertainty in y, i.e. u(y), just sum up all these individual squared differences in row 9 and take a square root of the sum, as shown in Figure 3.

Figure 3: Calculation of combined standard uncertainty

	Α	В	C	D	Е	
1		и	р	q	r	
2	р	u(p)	p+u(p)	р	p	
3	q	u(q)	q	q+u(q)	q	
4	r	u(r)	r	r	r+u(r)	
5						
6	y=f(p,q,r)	u(y) *	y=f(p',q,r)	y=f(p,q',r)	y=f(p,q,r')	
7						
8		Diff:	=C6-\$A\$6	=D6-\$A\$6	=E6- \$A\$ 6	
9		Squared Diff:	=C8^2	=D8^2	=E8^2	
10	* The formula is =SQRT(SUM(C9:E9)					
11						

In fact, the contents of the cells C8, D8 and E8 show the contributions $u_i(y)=c_iu(x_i)$ of the individual uncertainty components to the uncertainty in y, making it easy to see which components are significant. It may be noted that c_i is called the sensitivity coefficients of standard uncertainty $u(x_i)$.

A screen picture captured from the Eurachem/CITAC Guide on an example of the calculation table is shown below.

Quantifying Uncertainty Example A4

Table A4.5: Uncertainties in pesticide analysis

	Α	В	С	D	Е
1			Precision	Bias	Homogeneity
2		value	1.0	0.9	1.0
3		uncertainty	0.27	0.043	0.2
4					
5	Precision	1.0	1.27	1.0	1.0
6	Bias	0.9	0.9	0.943	0.9
7	Homogeneity	1.0	1.0	1.0	1.2
8					
9	P_{op}	1.1111	1.4111	1.0604	1.333
10	$u(y, x_i)$		0.30	-0.0507	0.222
11	$u(y)^2$, $u(y, x_i)^2$	0.1420	0.09	0.00257	0.04938
12					
13	$\mathrm{u}(P_{\mathrm{op}})$	0.377	(0.377/1.111 = 0.34 as a relative standard uncertainty)		