
1

Series of notes on Randomization – Part III

R techniques in generating random numbers

R has the ability to use a variety of random number generating algorithms or

in its term RNG (random number generators). The default generator is

Mersenne-Twister, developed by Makoto Matsumoto & Takuji Nishimura in

1997 with a cycle period of 219937-1. The other RNG methods in the R

program are Super-Duper, Wichmann-Hill, Marsaglia-Multicarry, Knuth-

TAOCP-2002, Knuth-TAOCP and L’Ecuyer-CMRG, etc.

Hence if we use the function RNG(), we have the default Mersenne-Twister

method. We can use RNGkind() command to show this:

> RNGkind()

[1] "Mersenne-Twister" "Inversion"

The above output shows two items listed. The first is the standard number

generator and the second is the one Inversion used for normal distribution

generation.

We can also use RNGkind() to alter the RNG algorithm. For example if we

want to change it to Super-Duper method, we write:

> RNGkind(kind='Super',normal.kind='Box')

> RNGkind()

[1] "Super-Duper" "Box-Muller"

In order to return to its defaults, we write:

> RNGkind('default')

> RNGkind()

[1] "Mersenne-Twister" "Box-Muller"

> RNGkind('default','default')

> RNGkind()

[1] "Mersenne-Twister" "Inversion"

>

Notice that if we were not to enter two defaults in the RNGkind() command,

we would retain the previously altered algorithm.

As we have mentioned earlier, random number generation follows the basic

principle of uniform probability distribution for equal chances. R language

for uniform distribution function is runif(). It refers to:

unif(n,min=0,max=1) where n is the number of random variables, min and

max are the lower and upper limits of the uniform distribution, respectively.

2

For example:

> runif(3,1,5) # to generate 3 random numbers with [1,5] range

[1] 2.324228 4.257119 3.213694

If we were to write:

> runif(3) # to generate 3 random numbers with default range

[1] 0.8547782 0.6827073 0.6220230

>

we would get 3 random numbers within [0,1] range

But, runif() does not give us the same random numbers every time we run a

particular command. In some simulation exercise where we demonstrate

something or testing and want to get the same thing time and time again, we

can use the set.seed() command to do this:

> set.seed(1) # 1 seed or starting point for RNG

> runif(1)

[1] 0.2655087

> runif(1)

[1] 0.3721239

> runif(1)

[1] 0.5728534

> set.seed(1)

> runif(3)

[1] 0.2655087 0.3721239 0.5728534

>

In here, we set the seed to 1 and then use three separate commands to

create three random numbers. If we then reset the seed to 1 and generate

three more random numbers (using only a single command this time), we get

the same values.

We can also use the set.seed() command to alter the kind of algorithm using

the kind= and normal.kind= instructions in the same way as we did when

using the RNGkind() command:

> set.seed(1,kind='Super')

> runif(3)

[1] 0.3714075 0.4789723 0.9636913

> RNGkind()

[1] "Super-Duper" "Inversion"

>

> set.seed(1,kind='default')

> runif(3)

[1] 0.3721239 0.5728534 0.9082078

>

> RNGkind()

[1] "Mersenne-Twister" "Inversion"

3

In the above example, we set the seed using a value of 1 and altered the

algorithm to the Super-Duper version. After using this to make three random

numbers, we look to see what we have before setting the seed to 1 again but

also resetting the algorithm to its default, the Mersenne-Twister.

How can we apply the above concept to randomized sampling?

For example, we have 100 cartons of cocoa butter fat for shipment and we

need to sample 10% or 10 cartons for inspection. As usual, we first label all

the cartons in running numbers from 1 to 100. We now use R language to tell

us how to randomly sample from this consignment as below:

> Consignment=c(1:100)

> sample(Consignment,size=10)

 [1] 21 89 93 65 61 6 20 17 64 35

>

So, we have extracted 10 carton numbers randomly from the 100 assigned

numbers.

Actually the sample() command contains of a default value: replace=FALSE.

If we were to ask the following command with replace=TRUE, we may get an

item to be selected more than once:

> Consignment=c(1:100)

> sample(Consignment, size=10, replace=TRUE)

 [1] 77 50 72 100 39 78 94 22 66 13

> sample(Consignment, size=10, replace=TRUE)

 [1] 27 39 2 39 87 35 49 60 50 19

>

