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How to handle outliers in regression 
 
We know that an outlier data, by its nature, is very different from all the 

others collected under a study.  When we have a set of replicated 

measurements, we can apply easily the Grubb’s, Dixon’s or any other outlier 

statistics to confirm if any one of the extreme values is a suspect value or 

possibly an outlier which is to be omitted before conducting further 

statistical analyses.   

 

But, it is harder to deal with them in regression statistics, referring to say, 

the construction of a calibration curve. The outlying points may not be 

necessarily at the extremely low or high positions.   

 

How are we then going to deal with the red spot as shown on Figure 1 below? 

 

 

 

Let’s first recall the meaning of residuals.   

A regression residual is represented by equation )(
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the regression equation y = a + bx.  It represents errors on the model.  

 

The least- squares method minimizes the sum of the squares of the y-

residuals, so a suspect point with a large y-residual can have a significant 

effect on the calculated slope b and intercept a of the linear regression line, 

and thus on the analytical information derived from the latter.  The 

illustration in Figure 2 highlights this point.   



2 

 

 

In cases where an obvious error such as a transcription mistake or an 

instrument malfunction has occurred, it is of course permissible to reject the 

resulting measurement (and, if possible, to repeat it). However, if there are 

suspect measurements for which there are no obvious sources of error or 

explanation, three distinct approaches are available: 

 

1. The use of a significance test or similar method to decide whether a 

measurement should be accepted or rejected; 

2. The use of median-based methods, in which suspect or outlying values 

are discounted; and  

3. The use of robust methods, in which such values may be included in our 

calculations, but given less weight, i.e. importance, in plotting the 

regression line. 

 

Simple outlier statistics cannot be directly applied to the points forming 

regression lines. This is because, although the individual yi-values in a 

calibration experiment are assumed to be independent of one another, the 

residuals are not independent of one another, as the sum of residuals is 

always zero.  See Figure 3 below. 
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A large residual indicates possible error and the presence of an outlier. 

However, it is not permissible to treat the residuals as if they were a 

conventional set of replicate measurements, and apply a familiar test such as 

the Grubbs’ test to identify any outliers.  

 

Of course, if we were to have a large number of yi-values which is not 

generally met in our routine analytical work, the above mentioned prohibition 

can be relaxed. 

 

Most computer programs handling regression data provide residual 

diagnostics routines. Some of these are quite simple, including plots of the 

individual residuals against yi-values. See Figure 4 below which shows a 

satisfactory distribution of residuals.   

 

 

When one of the residuals on the scatter plot shows obviously large as 

compared with the others, that particular y-value might be an outlier. 

 

A very simple statistical approach is to compare the regression models with 

and without the suspected value. If the suspected data does not exert a large 

influence over the model, then we would expect the adjusted predicted yi-

values to be very similar to the original predicted yi-values when the 

suspected data is included. We can say that the model in question is ‘stable’ 

regardless whether the suspected value is included or not.   

 

A more advanced method is the estimation for each point of Cook’s squared 

distance, SD2 (sometimes abbreviated to ‘Cook’s distance’), first proposed in 

1977. This is an example of an influence function, i.e. it measures the effect 

that rejecting the calibration point in question would have on the regression 

coefficients.  
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For a straight line graph, it can be calculated from: 
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   is a predicted y-value obtained when ALL the data points are used 
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 is the corresponding predicted y-value obtained when the i th point 

is omitted 

 xys /
2  is the standard error calculated using ALL the data points.  

 

When values of CD2 is greater than 1, we can justify to omit the suspected 

point from the calibration regression. 

 

In practice, the Cook’s square distance method turns out to be better at 

identifying some types of outlier than others: outliers in the middle of a data 

set are less readily detected than those at the extremes. Other popular and 

effective methods in handling outliers in regression include the alternative 

non-parametric and robust methods.  

 

  

 

 

 

 

 

 

 

 


