
1

Having a taste of R language

My colleagues have found the R language interesting and would like me to

show them some very basic steps in applying the language in statistical

evaluation. Below are some illustrations on simple steps used in the R

language. We begin by discussing what “vector” is about:

For the construction of a vector from given values, we use: c(….) operator.

For example,

> c(4,5,2,8,6,9,1)

[1] 4 5 2 8 6 9 1

> c(pi,2*pi,3*pi)

[1] 3.141593 6.283185 9.424778

> c("This is your first R program line")

[1] "This is your first R program line"

> c(TRUE,FALSE,TRUE)

[1] TRUE FALSE TRUE

If the arguments to c(…) operator are themselves vectors, we can flatten them

and combine them into one single vector:

> x <- c(1,2,3)

> y <- c(4,5,6)

> c(x,y)

[1] 1 2 3 4 5 6

However, if we were to sum up x+y, we got:

> z <- c (x+y)

>z

[1] 5 7 9

We use n:m to create a sequence of numbers, such as:

> 0:8

[1] 0 1 2 3 4 5 6 7 8

Interestingly, R knows that 8 is larger than 0, so it counts backward from the

starting to ending value:

> 8:0

[1] 8 7 6 5 4 3 2 1 0

But, the colon operator works for sequences that grow by 1 only. We use

“seq” function to build sequences but can support it with an optional third

argument “by”, which is the increment:

2

> seq(from=0,to=10, by=2)

[1] 0 2 4 6 8 10

>

> seq(from=5, to=30, by=5)

[1] 5 10 15 20 25 30

Alternatively, we can specify a length for the output sequence and then R will

calculate the necessary increment:

> seq(from=10, to=20, length.out=5)

[1] 10.0 12.5 15.0 17.5 20.0

We take note of some key properties of vectors:

1. Vectors are homogeneous (meaning all elements of a vector must have the

same type or, in R terminology, the same mode)

2. Vectors can be indexed by position (for example, w[2] refers to the second

element of w). Note the use of bracket signs [].

3. Vectors can be indexed by multiple positions, returning a sub-vector (for

example, w[c(2,3)] is a sub-vector of w that consists of the second and

third elements)

4. Vectors elements can have names

It means that vectors have a ‘names’ property, the same length as the

vector itself, that gives names to the elements:

> w<-c(5,50,100)

> names(w)<-c("ABC", "DEF", "GHI")

> print(w)

ABC DEF GHI

 5 50 100

5. If vector elements have names then we can select them by name:

 Continuing the previous example:

> w["DEF"]

DEF

 50

In R, a scalar is simply a vector that contains exactly one element. Consider

the built-in constant pi (π). It is indeed a scalar:

> pi

[1] 3.141593

Since a scalar is a one-element vector, we can use vector functions on pi:

> length(pi)

[1] 1

3

and, this scalar does not have a second element as shown below:

> pi[2]

[1] NA

In R, a matrix is just a vector that has dimensions. We can transform a

vector into a matrix simply by giving it dimensions.

To continue with this discussion, we note that vector has an attribute called

“dim”, which is initially NULL, as shown here:

> A<-1:6

> dim(A)

NULL

> print(A)

[1] 1 2 3 4 5 6

We can give dimensions to the vector when we set its “dim” attribute. See

below which shows the vector can be reshaped into a 2x3 matrix:

> A<-1:6

> dim(A)<-c(2,3)

> print(A)

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

It is interesting that R can generate matrices to a 3-dimensional or even n-

dimensional structures by just assigning more dimensions to the underlying

vector.

The following example creates a 3-D array with dimensions 2x3x2:

> D<-1:12

> dim(D)<-c(2,3,2)

> print(D)

, , 1

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

, , 2

 [,1] [,2] [,3]

[1,] 7 9 11

[2,] 8 10 12

4

Note that R prints one “slice” of the structure at a time because it is not

possible for us to print a 3-D structure on a 2-D medium!

Now, let’s see how we calculate basic statistics: mean, median, sample

standard deviation and sample variance (which is square of standard

deviation):

> x<- c(3,6,4,1,8,7,4,9,12,10,6)

> x

[1] 3 6 4 1 8 7 4 9 12 10 6

> mean(x)

[1] 6.363636

> median(x)

[1] 6

> sd(x)

[1] 3.26413

> var(x)

[1] 10.65455

> x-mean(x)

 [1] -3.3636364 -0.3636364 -2.3636364 -5.3636364 1.6363636 0.6363636

 [7] -2.3636364 2.6363636 5.6363636 3.6363636 -0.3636364

Another example of the R calculation:

> a<- c(4,6,2,4,8)

> mean(a)

[1] 4.8

> sd(a)

[1] 2.280351

> z<- (a-mean(a))/sd(a)

> z

[1] -0.3508232 0.5262348 -1.2278812 -0.3508232 1.4032928

All these functions are picky about values that are not available (NA). Even

one NA value in the vector argument can cause any of these functions to

return NA:

> y<-c(2,6,4,9,3,NA)

> mean(y)

[1] NA

> sd(y)

[1] NA

However, if we want to tell R to do the right calculation, we use the function

“rm” (remove memory) to reset the default FALSE to TRUE:

> y<-c(2,6,4,9,3,NA)

> mean(y, na.rm=TRUE)

5

[1] 4.8

> sd(y, na.rm=TRUE)

[1] 2.774887

Note: R prefers to use the assignment operator “<-“ instead of equals-sign

assignment“=” to prevent potential confusion with its expressions in test for

equality. Make sure this assignment operator is formed from a less-than

character (<) and a hyphen (-) with no space between them.

