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Using R to simulate the Central Limit Theorem 

 

We know that, in the absence of systematic errors, the mean of a sample of 

measurements,
__

x , provides us with an estimate of the true value, µ of the 

quantity we are trying to measure. But, because of random errors, it is most 

unlikely that the mean of the sample will be exactly equal to the true value. 

Hence, it is useful for us to give a range of values which is likely to include 

the true value.  The width of this range depends on two factors, i.e. 

 

 (1) the precision of the individual measurements, which in turn depends on 

the standard deviation of the population, and  

 (2) the number of measurements in the sample.  

 

We know that we have more confidence in the mean of several values rather 

than in a single value. That means we would expect that the more 

measurements we make, the more reliable our estimate of µ, the true value, 

will be.  

 

Hypothetically if we were to make 50 repeated measurements with a test 

method, we would get a range of values surrounding the true value µ with a 

mean value 
__

x  and a certain standard deviation. It is however, more likely 

that we would analyze 10 samples from that population with 5 repeated 

results in practice.  We would see at once that the means of these 10 

samples are more closely clustered than the original measurements.  

 

If we were to take still more samples of 5 measurements and calculate their 

means, those means would have a frequency distribution of their own.  The 

distribution of all possible sample means (in this case, we call it an infinite 

number) is called the sampling distribution of the mean. Its mean is the same 

as the mean of the original population. Its standard deviation is called the 

standard error of the mean (SEM). There is an exact mathematical 

relationship between SEM and the standard deviation, σ, of the distribution of 

the individual measurements.  

 

For a sample of n measurements, we have 

    Standard error of the mean = n/σ  

As expected, the larger n is, the smaller the value of the SEM and 

consequently smaller the spread of the sample means about µ.  

 

Do not have the wrong impression that the term “standard error of the mean” 
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is the difference between the µ and
__

x . This is not so. The SEM actually gives 

a measure of the variability of 
__

x . It tends to the normal distribution as n 

increases.  This concept is termed as the central limit theorem. 

 

The central limit theorem states that the sampling distribution of the sample 

mean approximates the normal distribution, regardless of the distribution of 

the population from which the samples are drawn, provided the sample size 

is sufficiently large.  This fact enables us to make statistical inferences 

based on the properties of the normal distribution, even if the sample is 

drawn from a population that is not normally distributed. 

 

In other words, the central limit theorem can be stated as follows with regard 

to the sample mean: 

 

Let X1, …., Xn be a random sample from some population with mean µ and 

variance σ2. Then, for large n, we have  

),(~
2___

n
NX

σ
µ  

even if the underlying distribution of individual observations in the 

population is not normal. 

 

The ~ symbol represents “approximately distributed”, and the formula can be 

read as “the mean of X is approximately normally distributed with mean µ 

and variance σ2
/n.)   

 

With the understanding of this central limit theorem, we can use a sample to 

define a range which we may reasonably assume to include the true value (in 

the absence of systematic errors, of course).  Such a range is known as a 

confidence interval and the extreme values of the interval are called the 

confidence limits with a given degree of confidence.  For example, at 95% 

confidence, we get 95% of the sample means lying in the range given by: 

)/(96.1)/(96.1
__

nxn σµσµ +<<−  

 

The application of the central limit theorem in practice can be seen through 

computer simulations (such as the R language) that repeatedly draw samples 

of specified size from a non-normal population, as illustrated below. 
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#================================================= 

# Simulation of central limit theorem 

#================================================= 

 

layout(matrix(c(1,2,3,4),2,2,byrow=TRUE)) 

 

#--------------------------------------------------------------------------- 

# One uniform random variable simulated 10000 times 

#--------------------------------------------------------------------------- 

size=1         # No. of random variables in sum. 

repeats=10000      # No. of values to simulate for 

             # histogram. 

v=runif(size*repeats)     # Vector of uniform random 

             # variables. 

w=matrix(v,size, repeats) # Enter v into a matrix 

             # sizeXrepeats). 

y=colSums(w)      # Sum the columns. 

hist(y,freq=FALSE,ann=FALSE)  # Histogram. 

title("size 1") 

 

#------------------------------------------------------------------------------ 

#Sum of 2 uniform random variables simulated 10000 times 

#------------------------------------------------------------------------------ 

size=2       # No. of random variables in sum. 

repeats=10000    # No. of values to simulate for 

           # histogram. 

v=runif(size*repeats)   # Vector of uniform random 

          # variables. 

w=matrix(v,size, repeats) # Enter v into a matrix 

             # sizeXrepeats). 

y=colSums(w)    # Sum the columns. 

hist(y,freq=FALSE,ann=FALSE)  # Histogram. 

title("size 2") 

 

#------------------------------------------------------------------------------ 

#Sum of 4 uniform random variables simulated 10000 times 

#------------------------------------------------------------------------------ 

size=4       # No. of random variables in sum. 

repeats=10000    # No. of values to simulate for 

           # histogram. 

v=runif(size*repeats)   # Vector of uniform random 

           # variables. 

w=matrix(v,size, repeats) # Enter v into a matrix 
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            # sizeXrepeats). 

y=colSums(w)     # Sum the columns. 

hist(y,freq=FALSE,ann=FALSE)  # Histogram. 

title("size 4") 

 

#------------------------------------------------------------------------------- 

#Sum of 20 uniform random variables simulated 10000 times 

#------------------------------------------------------------------------------ 

size=20       # No. of random variables in sum. 

repeats=10000    # No. of values to simulate for 

           # histogram. 

v=runif(size*repeats)   # Vector of uniform random 

           # variables. 

w=matrix(v,size, repeats) # Enter v into a matrix 

            # sizeXrepeats). 

y=colSums(w)     # Sum the columns. 

hist(y,freq=FALSE,ann=FALSE)  # Histogram. 

title("size 20") 

 

 

 


