What are Mandel's *k / h* test statistics?

Objectives of Mandel's *k/h* **consistency test statistics**

- k and h test statistics are measures for data consistency, particularly useful for inter-laboratory studies
- By studying the collated data deviations and accuracy, the performance of a laboratory in terms of its reliability and errors can be established
- The laboratory with poor performance can then do its own in-house investigation and make corrective actions for such deficiencies

Mandel's *k* and *h* consistency test statistics are discussed in ASTM E691 standards for interlaboratory analysis :

"Standard practice for conducting an interlaboratory study to determine the precision of a test method"

Inter-laboratory cross-checks and proficiency testing programs

- Inter-laboratory comparison of test results is an efficiency way to validate the precision of a test method and also to compare the technical competence of the laboratory personnel in terms of precision and accuracy
- Many participating laboratories will carry out series of analyses on one or more given similar samples at about the same period. The data collated are statistically analyzed

Evaluating k test statistic

- k value is a measure of within-laboratory consistency in repeatability
- If there are p number of participating laboratories (*j*), and *n* is the number of repeats in a laboratory ($x_1, x_2, x_3, \dots, x_i, \dots, x_{n-1}, x_n$)
- The k value of lab (j) is : $k_{j} = \frac{S_{j}}{s_{r}} \qquad s_{j} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i,j} - \overline{x}_{j})^{2}}{n-1}}$ $k_{j} = \sqrt{\frac{S_{j}}{s_{r}}} \qquad s_{r} = \sqrt{\frac{\sum_{i=1}^{p} s_{i}^{2}}{p}}$

Interpretation of k value

- The *k* value compares the repeatability standard deviation of a laboratory data set with the average of the repeatability standard deviations of all other laboratories
- From the *k* value, we can evaluate the spread of the data set and its precision.
- This test statistic reflects the *single* lab's repeatability against the average repeatability of all participating laboratories
- The larger the *k* value, the bigger is the data deviation, indicating the poorer the precision

k critical value for consistency (k-crit)

- *k-crit* value is the critical value of seriousness for data deviation at a given probability
- <u>k-crit</u> defines as: $k crit = \sqrt{\frac{p}{1 + (p-1)/F}}$
- where: F value is from the F F distribution,

p is the number of participating laboratories.

• When the *k* value is higher than the *k*-*crit*, it can be concluded that the test result deviation is serious with poor precision and unacceptable.

How to obtain the *F* test statistic value?

- F(v1, v2) is the F F distribution value
- Degree of freedom v1 = (n-1), *n* is the number of repeats in a single laboratory
- Degree of freedom v2 = (p-1)(n-1)
- Upon knowing the degrees of freedom, we can obtain the F value from the F-F table
- Or use the Excel function "=FINV(0.05,*v1*,*v2*)"

Evaluating the *h* **test statistic**

- The *h* test statistic is used to examine the consistency of interlaboratory data, confirming if any laboratory data is an outlier
- In other words, it is to indicate the accuracy of a lab results against the others reported
- Let *p* be the number of participating labs with the lab mean results as follows: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_i}, ..., \overline{x_p})$
- The overall mean result of this interlaboratory study is $= \frac{\sum_{j=1}^{r} x_j}{x_j}$

Evaluating the *h* test statistic

• The deviation of mean result of a lab (j) from the overall mean is:

$$d_{j} = \overline{x}_{j} - \overline{x}$$

• The standard deviation of these comparison is :

$$s_{\frac{p}{x}} = \sqrt{\frac{\sum_{j=1}^{p} d_{j}^{2}}{p-1}}$$

• The *h* value of lab (*j*) is : $h_j = \frac{d_j}{s_{=}}$

Interpretation of *h* test value

- *h* test statistic value reflects the deviation of a single laboratory's mean test results from the overall mean results obtained from all participating laboratories
- The larger the *h* value, the bigger the deviation, the poorer is the accuracy of that single laboratory

h critical value for consistency (h-crit)

- *h-crit* is a measure of seriousness in a lab's inaccuracy
- <u>h-crit</u> defines as: $h-crit = \pm \frac{t(p-1)}{\sqrt{p(t^2+p-2)}}$
- where: *t* is the Student's distribution with degree of freedom v = p 2, and $\alpha = 0.05$;

p is the number of participating laboratories

When the h value is larger than the h-crit, it is concluded that the mean result given by the laboratory concerned is not accurate and reliable

Mandel's 曼德尔 k / h 统计测验量

原始数据 实验室:

Α	в	С	D	E
9.35	9.06	8.86	9.84	8.88
10.12	9.86	8.34	9.56	9.98
9.32	10.20	10.33	9.43	8.86
9.14	10.40	9.86	10.50	9.45

А	в	С	D	E
0.435	0.590	0.909	0.477	0.534
0.189	0.349	0.827	0.227	0.285
1.877				
5				
0.375				
0.613				
0.710	0.964	1.484	0.778	0.871
9 400		$h = n \left(I \right)$		(n 1)/F1
3.490		κ -cru =	$p_{1} + (p$	- 1)/1-]
1.526				
	A 0.435 0.189 1.877 5 0.375 0.613 0.710 3.490 1.526	A B 0.435 0.590 0.189 0.349 1.877 5 0.375 0.613 0.710 0.964 3.490 1.526	A B C 0.435 0.590 0.909 0.189 0.349 0.827 1.877 5 0.375 0.613 0.710 0.964 3.490 1.526 k-crit =	A B C D 0.435 0.590 0.909 0.477 0.189 0.349 0.827 0.227 1.877 5 0.375 0.613 0.710 0.964 1.484 0.778 3.490 1.526 k-crit = p / [1 + (p

h 測验

实验室:	Α	в	С	D	E
平均值	9.483	9.880	9.348	9.833	9.293
总平均值	9.567				
均值差, d	-0.085	0.313	-0.220	0.265	-0.275
实验室数目	5				
方成均值差 d^2	0.007	0.098	0.048	0.070	0.075
总方成均值差	0.299				
总均值标准差	0.273				
h-值	-0.309	1.145	-0.803	0.971	-1.004
1 /25 /	0.400	1		11	(n-1)

t 值 (v=5-2 = 3)	3.182
+/- h-crit 临界值	1.571

h - crit =	t(p-1)		
	$\sqrt{p(t^2 + p - 2)}$		