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A short note on non-parametric and robust methods 

 

We often assume that our analytical data collected follow the normal 

(Gaussian) distribution.  This assumption is somehow supported by 

the central limit theorem which shows that the sampling distribution 

of the mean (average) results may be approximately normal even if the 

parent population has quite a different distribution.  However, it must 

be stressed that the central limit theorem is not really valid for very 

small data sets (say, three or four readings) frequently used in 

analytical works.  

 

Indeed, we cannot always assume the data collected are normally 

distributed.  Some sets of data occurring in the analytical sciences can 

also have different distributions.  For example, the antibody 

concentration in the blood sera of a group of different people can be 

expressed approximately as a log-normal distribution.  Another 

example is the total bacterial colony count on a meat sample after 48-

hr incubation at 37o C.  The variation of the repeated counts tends to 

follow a Poisson distribution, instead, because the contributors to the 

result variation are many, including the colony form counting is on 

living microorganisms which can be of different growth strength.  

 

There is growing evidence that even when repeated measurements are 

made on a single test material, the distribution of the results is 

sometimes symmetrical but not normal, e.g. the data may include 

more results than expected which are distant from the mean. The 

outlier testing fails to single out these outliers as there are results 

close to them. Such heavy-tailed distribution can be mistakenly 

regarded as normal distribution with the addition of grouped outliers 

arising from gross errors. 

 

Heavy tailed distribution data may also arise from the superposition of 

two or more normal distributions with the similar mean value, but with 

significantly different standard deviations. This situation can happen if 

we use more than one piece of analytical instrument to do the 

measurements.  
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Hence, we can consider two groups of statistical tests for handling 

data that may not be normally distributed.  Methods which make no 

assumption about the shape of the distribution from which the data 

are taken are called non-parametric or distribution-free methods. 

Examples of these methods include the sign test and the chi test.  

These calculations are relatively simple to be carried out.  

 

In here, we do not talk about arithmetic mean or average as the 

“measure of central tendency” of a set of results. Instead, we use 

median, which is the value of the th
n

2

1+
 observation if n is odd, and 

the average of the th
n

2
 and the th

n

2

1+
 observations if n is even after 

arranging the set of data in ascending order. Median is not affected by 

outlier values. 

 

In non-parametric statistics, the usual measure of dispersion 

(replacing standard deviation) is the interquartile range (IQR) as 

median divides the sample of measurements into two equal halves; if 

each of these halves is further divided into two, the points of division 

are called the upper and lower quartiles.  However, this IQR concept is 

not widely practiced in analytical world. This is because we do not 

have many repeated measurements made and hence the differences in 

the calculated IQR values are large. But IQR has been extensively used 

in the laboratory proficiency testing programs with many participating 

laboratories where the chance to get groups of extreme results is high. 

 

The median and the IQR of a measurement set are just two of the 

statistics which feature strongly in initial data analysis (IDA) or also 

called exploratory data analysis (EDA).  

 

Robust methods are based on the belief that that the underlying 

population distribution may indeed be approximately normal, but with 

the addition of data such as outliers that may distort this distribution.  

These techniques in essence operate by reducing the weight given to 

suspicious results or outliers, so are appropriate in the cases of heavy-

tailed distributions, and their acceptance and use have increased 

dramatically in recent years  
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The robust methods differ from non-parametric methods in that they 

often involve iterative calculations that would be lengthy or complex 

without a computer, but their rise in popularity certainly owes much to 

the universal availability of desk-top computers. 

 

There are some very simple robust methods which do not require 

iterations because they arbitrarily eliminate suspicious data with some 

degree of confidence, rather than down-weighting a proportion of the 

data, such as trimming the outlier results.   

 

Another less arbitrary robust approach is provided by winsorisation. 

In its simplest form, this process reduces the importance of the 

measurements giving the largest positive and negative deviations from 

the mean or median by moving the measurements so that these 

deviations become equal to the next largest or smallest ones (or 

perhaps the third largest ones). The advantage of this approach is that 

it is applied to a data set lacking suspect values or actual outliers, the 

effects on the calculated measures of location and spread are small, so 

no harm is done.  

 

A robust variance estimate can also be derived from a statistic related 

to the unfortunately abbreviated median absolute deviation (MAD) 

which is calculated from: 

 

   MAD = median [ |xi – median(xi)|] 

where median(xi) is the median of all the xi values, i.e. all the 

measurements.   

 

I had written an article on MAD in one of my earlier blogs.  

 

 

 


