
 

Linear regression – Testing for non-linearity 

 

In analytical chemistry, linear regression is commonly used in the 

construction of calibration functions required for analytical techniques such 

as gas chromatography, atomic absorption spectrometry and UV-visible 

spectrometry where a linear relationship is expected between the working 

standard concentration of the analyte (independent variable) plotted on the 

x-axis of the scatter plot, and the instrument response (dependent variable) 

plotted on the y-axis..  

 

The general equation which describes a fitted straight line can be written as:  

 

y = a + bx 

 

where b is the gradient of the line and a, its intercept with the y-axis.  

 

The method of least-squares linear regression is used to establish the values 

of a and b.  The ‘best fit’ line obtained from least-squares linear regression 

is the line which minimizes the sum of the squared differences between the 

observed (or experimental) and fitted values for y.  The signed difference 

between an observed value (yi) and a fitted value ( 
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y
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It may be noted that the most common form of regression is of y on x. This 

assumes that the x values are known exactly and the only error occurs in the 

measurement of y.  

 

However, there are a number of assumptions for a simple least-squares 

linear regression of y on x, such as: 

 

1. The errors of the x-axis should be negligible; 

2. For estimating confidence intervals and drawing inferences, the error 

associated with the y-axis must be normally distributed.  If there is any 

doubt about the normality, a few replicates of the y-values can be 

averaged as mean value tends to be normally distributed even where 

individual results are not; 

3. The variance of the error in the y-values should be constant across the 



range of interest. i.e. the standard deviation should be constant. Simple 

least-squares regression gives equal weight to all points; this will not be 

appropriate if some points are much less precise than others; 

4. Both the x- and y-data must be continuous valued and not restricted to 

integers, truncated or categorized (for example, sample numbers, days of 

the week). 

 

There are a few ways to test if the least-squares regression is truly linear. 

 

a. Visual examination of regression data through their residual plots 

 

Plotting the residuals can help to identify problems with poor or incorrect 

curve fitting.  

 

If there is a good fit between the data and the regression model, the 

residuals should be distributed approximately randomly around zero.  There 

is no trend in the spread of residuals with concentration on x-axis as shown 

in the Figure 1B example.  However, the Figure 2B illustrates a typical plot of 

residuals that is obtained when a straight line is fitted through data that 

follow a non-linear trend.  It can be noted that the plot shows a certain 

curve trend instead of randomly scattered around zero.  

 

In another scenario, a residual plot can exhibit a straight line trend if the 

standard deviation of the y-values increases with analyte concentration. Such 

plot can be made when we have replicated results for each y-value.   

 

 
 

y = 0.0865x + 0.0336

R² = 0.9965
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FIG 1A: Scatter Plot of absorbance y on x 
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FIG 1B: Residual Plots for data in FIG 1A

y = 0.0766x + 0.0806

R² = 0.9729
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FIG 2A: Scatter Plot of absorbance y on x 

concentration
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FIG 2B: Residual Plots for data in FIG 2A
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b. F-Test for residual standard deviation against repeatability standard 

deviation 

 

The residual standard deviation can be compared with an independent 

estimate of the repeatability of the y-values at a single x-value using an F-

test as shown in the following equation: 
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and sr is the stated repeatability of the method in question, which normally 

can be found in its standardized method..  

 

A significance testing can be carried out. The null hypothesis for the test is 

Ho: sy/x = sr and the alternative hypothesis is H1: sy/x > sr. The test therefore is 

a 1-tailed test and the sy/x estimate has n-2 degrees of freedom where n is 

the number of pairs of data in the regression data set.  

 

At the 95% confidence level, the appropriate F critical value is obtained from 

tables for α = 0.05, v1 = degrees of freedom for sy/x and v2 = degrees of 

freedom for sr.  If the calculated F exceeds the critical value, the null 

hypothesis is rejected, i.e. H1 is true.  

 

The inference is that the residuals are more widely dispersed than can be 

accounted for by random error alone. This could be evidence of non-linearity 

but a significant result could also occur if, for example, one or two 

observations were biased by other factors. Hence, studying the scatter plot 

and plot of the residuals will help to decide between the two. 

 

3. ANOVA applied to residuals 

 

If experimental observations are replicated at each value of x, applying one-

way ANOVA to the residuals obtained using the x-values as the grouping 

factor can warn of non-linearity. A significant F value between group mean 

square indicates that the group means deviate from the line more than would 

be expected from the repeatability alone as represented by the within-group 



mean square.  This may point to significant non-linearity. Visual inspection 

of the residuals is till advisable, however, because a variety of effects can 

cause a significant between group effect in the residuals, such as volumetric 

errors or in the case of CRM, matrix effect. We shall show a worked example 

to illustrate the use of ANOVA applied to residuals in another paper. 

 

4. Testing for significant higher order terms 

 

Another practical approach to evaluating non-linear data is to fit a more 

complex (higher order) equation to the data, such as a quadratic equation 

with second order, x2, and determine whether the new equation is a better 

representation of the data.  We shall also illustrate this point in future 

communications.  

 

 

 

 

 

 

 


