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Overcoming the limitations of t-distribution 

 

We know well that if the population of data are normally distributed, the 

sampling distributions of the means and the difference between the means 

are also normal. Even if the parent populations are not normally distributed, 

the Central Limit Theorem provides that the sampling distributions will 

approach normality when the sample size is sufficiently large. The theorem 

gives the following equation: 
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where, µ is the population mean; 
__

x , mean of sample means; σM = σ/√n, 

standard error of mean and z, standard normal variable which has a mean of 

zero and a standard deviation of 1.  

 

For the two-tailed case, the probability of a mean value falling outside the 

range µ+1.96σ/√n is 0.05, meaning z = 1.96 with 95% confidence: 

    

However, it may be noted that the statistics 
__

x and s are estimates of the 

unknown parameters µ and σ, and usually approach them more closely when 

n increases. But 
__

x and s are variables which if a series of measurements were 

repeated, the resultant values of 
__

x  and s would be different each time. 

Hence, we cannot take them directly to substitute for the parameters µ and σ 

in the above equation. 

 

Instead, we can use modified equations in which we substitute a variable t 

(also called Student’s t) for the standard normal variable, z as below: 
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When n approaches infinity, t approaches z. Hence, we can re-write as: 
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The figure below shows a comparison of a t-distribution of 2 degrees of 

freedom which has ‘thicker’ tails, with the standard normal distribution: 

 

   

When we want to study if the means of two independent samples A and B 

upon experiment, drawn from a population of which its population standard 

deviation σ is unknown, we use the following t-distribution equation: 
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There is an important assumption for the use of the above equation. That is, 

the pooled standard deviation sp is an estimate of the supposedly constant 

population variance σ2.  Hence the t-test has assumed homogeneity of 

variance under normal distribution. 

The t-test has been said to be robust to some violation of the assumptions of 

the underlying statistical model. Indeed, computer simulations have shown 

that even with moderate violations of the above assumptions, the error rates 

are little affected, provided the sample sizes are not too small with no data 

outliers and the samples are of equal or nearly equal size.  

But there are limits to this robustness. When the sample variances are very 

different, especially in combination with markedly discrepant sample sizes, 

error rates can become unacceptably high, say more than 5%, threatening the 

assumption of homogeneity.  When encountering this situation, we can  

carry out the Behrens-Fisher T-statistic test which uses the following 

equation:     
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The statistic T is distributed approximately as t, but on fewer degrees of 

freedom than nA + nB – 2.  Several formulae for the degrees of freedom of T 

have been proposed and the most popular one is the Welch-Satterthwaite’s:    
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The above equation shows that the greater the disparity between the two 

sample variance estimates, the smaller will be the dfT value and this will cause 

a greater T for the test to show significance. There will be situations in which 

T may be significant when t is not.  

 

 


