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A discussion on multiple regression models 

 

In our previous discussion of simple linear regression, we focused on a 

model in which one independent or explanatory variable X was used to 

predict the value of a dependent or response variable Y.  We find such  

model is very useful in establishing a calibration curve for analytical 

instrument where the X variable is the standard solution concentration and  

Y, the instrument response.  However, in many other scientific studies, we 

encounter several independent variables which affect the final outcome of 

the experiment. Hence, we now want to model the dependent variable by 

several independent variables.  

 

For example, we may want to carry out a drug chemical synthesis experiment 

by predicting its yield (g) based on its reaction temperature (oC) and vessel 

pressure exerted (psi). In this case, we have two independent variables to 

predict the value of the dependent variable, i.e. the drug yield. With these 

two dependent variables in the multiple regression model, a scatter diagram 

of the drug yield as an outcome variable can be plotted on a three-

dimensional graph such as the diagram below: 

            

 

    

       

       

       

       

       

       

        

 

 

In general, if Y is the dependent or outcome variable and X1, X2, …, Xk are k 

independent variables, then the general multiple regression model has the 

general form 

 

    Y = βo + β1X1 + β2X2 + … + βkXk + ε 

 

where  

 

Reaction Temperature 

Product Yield 

Vessel Pressure 
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βo is y-intercept, and  

 

βk is the slop of y with variable xk when the other X’s are held constant.   

 

The part E(Y) = βo + β1X1 + β2X2 + … + βkXk  is the deterministic portion of 

the model. The ε term is the random error in Y 

 

Before further discussion, we have to take note of the assumptions made on 

multiple regression. The assumptions of simple regression discussed earlier 

also hold true for multiple regression.  They are mainly: 

 

1. For any given set of values of the independent variables, the random error 

ε has a normal distribution with mean = 0 and standard deviation equal to 

σ; 

2. The random errors are independent. 

 

Furthermore, as soon as we use more than one independent variable, we 

have to worry about multi-collinearity. This means that none of our 

independent variables (also called predictors) should correlate highly with 

any other independent variable.  In particular, no variable can be a linear 

combination of other variables, i.e. we cannot include as predictors the 

independent variables A, B and A+B. Predictor variables that are highly 

correlated tend to explain much the same as variance in an outcome variable, 

blurring the relationship of each individual predictor with the outcome.  

 

Let’s see how the first-order model works in estimating and interpreting the 

parameters involved.  

 

As in the case of simple linear regression, we also adopt the sample 

regression coefficients (bo, b1 and b2) used as estimates of the population 

parameters (βo, β1 and β2).  Therefore, the regression equation for a multiple 

linear regression model with two explanatory variables, for example, is 

expressed as follows: 

       y = bo + b1x1 + b2x2 

 

For illustration, a series of experiments was carried out to synthesize a drug 

chemical by studying its total yield against two independent variables, 

reaction temperature and vessel pressure. The test results were summarized 

as below: 
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Pressure, psi Temperature, oC Yield, g 

10 40 25 

20 40 30 

30 40 33 

10 60 32 

20 60 38 

30 60 40 

10 80 45 

20 80 47 

30 80 48 

 

By applying the Excel software through Data ->Data Analysis -> 

Regression, we get the following Excel output with the values of the 

coefficients shown: 

SUMMARY OUTPUT      

Regression Statistics       

Multiple R 0.985      

R Square 0.971      

Adjusted R Square 0.961      

Standard Error 1.602       

Observations 9      

       

ANOVA         df SS MS F Significance F  

Regression 2 510.833 255.417 99.585 2.501E-05  

Residual 6 15.389 2.565    

Total 8 526.222        

         Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 5.222 2.417 2.161 0.074 -0.692 11.137 

Pressure 0.317 0.065 4.843 0.003 0.157 0.477 

Temperature 0.433 0.033 13.256 0.000 0.353 0.513 

 

The estimated regression equation therefore is  

 

    Yield = 5.22 + 0.37 Pressure + 0.433 Temperature 
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The above equation tells us that adding one psi vessel pressure adds 0.37g 

drug yield and increasing one degree reaction temperature increases the 

drug yield by 0.43 g.  In other words, if the reaction temperature was fixed 

at 80oC and the vessel pressure, at 20 psi, the drug chemical yield might be: 

 

Yield = 5.22 + 0.37 (20) + 0.433 (80) = 46.2 g 

 

We can make few inferences from the parameters obtained, such as:   

 

1. Estimating the confidence interval on β1, the coefficient in front of the 

pressure variable in the above example. 

 

In general, the confidence interval for βi is bi + tα/2 x standard error of bi. The 

degrees of freedom for the t-value is n – (k+1), where n = sample size, (k+1) = 

the number of beta in the model. 

 

Hence, in this case, we have 9 – (2+1) = 6 degrees of freedom and the critical 

t0.5/2 = 2.447. The 95% confidence interval for the pressure coefficient, β1 is 

given by b1 + tα/2 x standard error of b1, which is 0.317+ 2.447 x 0.065 = 0.317 + 

0.159 or (0.157, 0.477).        

 

2. Hypothesis testing that Ho : β2 = 0 

Use the following t-statistic:   
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As b2 = 0.433 and standard error b2 = 0.033, t-statistic = 13.256 whilst t0.5/2 

= 2.447 and the corresponding p-value = 0.00, it can be concluded that the 

null hypothesis Ho : β2 = 0 is rejected. 

 

One may be cautioned about conducting several t-tests on the betas. This is 

because if each t-test is conducted at α = 0.05, the actual alpha that would 

cover all the tests simultaneously is considerably larger than 0.05.  

 

For example, if significance tests are conducted on five betas, each at α = 

0.05, then if all the β parameters (except βo) are equal to zero, approximately 

(1-0.952) = 0.227 or 22.7% of the time we will incorrectly reject the null 

hypothesis at least once and conclude that some β parameter differs from 

zero.  If there are 10 betas, there are approximately 40% of the time we will 

make such mistake! 
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3. The adjusted coefficient of determination R2(adj) 

 

The coefficient of determination R2 is also an important measure not to be 

ignored. The adjusted coefficient of determination R2(adj) has been adjusted 

to take into account the sample size and the number of independent 

variables.  It is defined in terms of R2 as follows: 
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In this drug experiments, we found R2 = 0.971 and R2(adj) = 0.961 or 96.1%. 

 

Do take note that the adjusted R2 does not have the same interpretation as 

R2.  We know R2 is a measure of goodness of fit, adjusted R2 is instead a 

comparative measure of suitability of alternative nested sets of independent 

variables.  

 

 

  

 


