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Pitfalls in Linear Regression Analysis 
 

Due to the widespread availability of spreadsheet and statistical software for 

disposal, many of us do not really have a good understanding of how to use 

regression analysis properly. Indeed, before one can use regression analysis 

in a proper manner, one should realize the various difficulties associated in 

using it, namely: 

 

1. Lacking an awareness of the assumptions of least-squares regression 

2. Not knowing how to evaluate the assumptions of least-squares 

regression 

3. Not knowing what the alternatives to least-squares regression are if a 

particular assumptions is violated 

4. Worst still, using a regression model without knowledge of the subject 

matter 

 

How can a user be expected to know what the alternatives to least-squares 

regression are if a particular assumption is violated, when he or she in many 

instances is not even aware of the assumptions of regression, let alone how 

the assumptions can be evaluated? Hence, it is necessary to go beyond the 

basic number crunching exercise such as the computation of the Y-intercept, 

the gradient (slope) and r2.  

 

Let us recall what the three major assumptions of regression and correlation 

are: 

 

1. Assumption of normality:  

This assumption requires that errors around the line of regression be 

normally distributed at each value of X.  Like the t test and the ANOVA F 

test, regression analysis is fairly robust against departures from the 

normality assumption. As long as the distribution of the errors around the 

line of regression at each level of X is not extremely different from a 

normal distribution, inferences about the line of regression and the 

regression coefficient will not be seriously affected. 

 

2. Assumption of homoscedasticity:   

This requires that the variation around the line of regression be constant 

for all values of X.  This means that the errors in the Y-responses vary by 

the same amount when X is a low value as when X is a high value. This 

homoscedasticity assumption is important for using the least-squares 

method of determining the regression coefficients. If there are serious 

departures from this assumption, either data transformations or weighted 

least-squares methods can be applied. 

 



2 

 

3. Assuming independence of errors:  

This requires that the errors should be independent for each value of X. 

This assumption is particularly important when data are collected over a 

period of time. In such situation, the errors for a particular time period 

are often correlated with those of the previous time period.  If this 

occurs, alternatives to least-squares regression analysis need to be 

considered. 

 

This discussion of pitfalls in regression can be best illustrated by referring to 

Table 1 on three sets of artificial data that demonstrate the importance of 

observations through scatter plots and residual analysis.  

 

Table 1: Three sets of artificial data 

Data Set A Data Set B Data Set C 

X Y X Y X Y 

4 4.26 4 3.10 4 5.39 

5 5.68 5 4.74 5 5.73 

6 7.24 6 6.13 6 6.08 

7 4.82 7 7.26 7 6.42 

8 6.95 8 8.14 8 6.77 

9 8.81 9 8.77 9 7.11 

10 8.04 10 9.14 10 7.46 

11 8.33 11 9.26 11 7.81 

12 10.84 12 9.13 12 8.15 

13 7.58 13 8.74 13 12.74 

14 9.96 14 8.10 14 8.84 

 

It is interesting to note that these three sets of data yield almost the same 

statistical parameter values: 

 

Y = 0.50X + 3.00  

r2 = 0.667 

SSR = 27.51 

SSE = 13.76 

SST = 41.27 

 

Had we stopped our analysis at this point, we would lose valuable 

information in the data collected and might be led to wrong inferences and 

conclusions. However, if we were to examine the scatter diagrams of these 

three sets of data as shown in Figure 1 and the residual plots in Figure 2, we 

would see how different the data sets were.  

 

Figure 1: Scatter Plots of Data Sets A, B and C 
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Figure 2: Residual plots for Data Sets A, B and C 

 

 

From the Figures 1 and 2, we see that the only data set that seems to follow 

an approximate straight line is data set A. The residual plot for data set A 

does show random patterns around the zero and does not appear to have 
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outlying residuals.  

 

This is certainly not the case for data sets B and C. The scatter plot of data 

set B seems to indicate that a quadratic regression model should be more 

suitable. This observation is reinforced by the clear parabolic form of the 

residual plot for data set B. Indeed, the quadratic equation Y = -0.1267X
2
 + 

2.7808X - 5.9957 fits the points very well with r² = 1 as shown in Figure 3 

below: 

 

 

 

The scatter diagram and the residual plot for data set C clearly depict what 

may very well be an outlying observation. If this is the case, we may want to 

remove the obvious outlier and re-estimate the basic model.  It should be 

noted that upon removal of the outlier, the result of re-estimating the model 

might lead to a relationship that is very much different from the one 

originally conjectured. 

 

We see here that residual plots are of vital importance to a complete 

regression analysis. They do provide good basic information to a credible 

analysis. Therefore, these plots should always be included as part of a 

regression analysis.  

 

We summarize a strategy for avoiding the pitfalls of regression as follows: 

 

1. Always start with a scatter plot to observe the possible relationship 

between X and Y 

2. Check the assumptions of regression after the regression model has been 

fitted, before moving on to using the results of the model 

3. Plot the residuals versus the independent variable. This chart will enable 
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us to determine whether the model fitted to the data is an appropriate 

one and will allow us to check visually for violation of the 

homoscedasticity assumption; 

4. We can use a histogram, box-and-whisker plot, or normal probability plot 

of the residuals to evaluate graphically whether the normality assumption 

has been seriously violated; 

5. If the evaluation done in (3) and (4) indicates violations in the 

assumptions, we then use methods alternative to least-squares 

regression or alternative least-squares models (quadratic or multiple 

regression), depending on what the evaluation has indicated any of this 

direction; 

6. If the evaluation done in (3) and (4) does not indicate violation of the 

assumptions, then the inferential aspects of the regression analysis can 

then be proceeded.  Tests for the significance of the regression 

coefficients can be done and confidence and prediction intervals can then 

be developed. 

  

 

 


