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Design of Experiment –  
How to transform experimental data with unequal variances? 
 

In our discussion on experiments whose data are described or analyzed by 

the one-way analysis of variance ANOVA model, one of the assumption 

questions we asked was “do the error variables εit have similar variances for 

each treatment?”.  

 

If they do, we have satisfied one of the requirements that the experimental 

data are of constant variances statistically.  If they do not, we should then 

try to find a variance stabilized transformation of the data to equalize the 

variances of the error variables.  This involves finding some function h(yit) of 

the data so that the model 

 

   h(Yit) = µ* + τi* + εit* 

 

holds and εit* ~ N(0,σ2) and the εit*’s are mutually independent for all t = 

1,2,….,ri  and i = 1,2,…, n.  

 

An approximate transformation can generally be found if there is a clear 

relationship between the error variance σi
2 = Var(εit) and the mean response 

E[Yit] = µ + τi for i = 1,…., n.   

 

If the variance and the mean increase together, as suggested by the 

megaphone-shaped residual plot against the mean values, or if one 

increases as the other decreases, then the relationship between σi
2 and µ + τi 

is often of the form 

   σi
2 = k(µ + τi)q            (1) 

where k and q are constants. In this case, the function h(yit) should be chosen 

to be 

       (yit)1-q/2   if q ≠ 2, 
   h(yit) =    ln(yit)     if q = 2 and all yit’s are non-zero,  (2) 

       ln(yit+1)  if q =2 and some yit’s are zero. 

 

Usually the value of q is not known but we can find a reasonable 

approximation empirically as described below. 

 

First we substitute the least square estimates for the parameters into 

equation (1) and take logs of both sides, giving 
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Therefore, the slope of the line obtained by plotting ln(si
2) against )ln(

__

i
y gives 

an estimate of q. We shall illustrate this in the following example. 

 

But, it is to be noted that when a transformation is found that equalizes the 

variances, it is necessary to check or recheck the other model assumptions, 

because a transformation that cures one problem could cause others. If there 

are no problem with the other assumptions, we can then proceed with the data 

analysis as usual. 

 

Example: Battery lifetime experiment 

 

An experiment was designed to find out which type of non-rechargeable 

battery was the most economical in terms of its lifetime per unit cost.  There 

were two treatment factors each having two levels, namely battery “duty” (level 

1=alkaline, level 2 = heavy duty) and “brand” (level 1 = A brand and level 2 = 

B brand). Hence, the codes for the experiments were: 

 

Code  Treatment combination 

1 alkaline, A brand 

2 alkaline, B brand 

3 heavy duty, A brand 

4 heavy duty, B brand 

 

The data for the battery lifetime experiment were tabulated in Table 1 below. 

 

Table 1:  

Data for the battery lifetime experiment (hrs) 

Code 1 2 3 4   602 863 232 235   529 743 255 282   534 773 200 238   585 840 215 228 

Mean 562.5 804.75 225.5 245.75 

Std Dev 36.52 56.14 23.61 24.53 

Variance 1333.67 3152.25 557.67 601.58 

 

In this one-way analysis of variance model, the residual (error variable) is 

taken as 
iitit yy

__

−=ε  and the standardization of these residuals is achieved by 

dividing the residuals by their standard error, that is by
1−n

SSE .  Table 2 

summarizes the residuals and standardized residuals for the battery lifetime 
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experiment. 

 

Table 2: Residuals & standardized residuals for the battery experiment 

Residuals εit         

Treatment 1 2 3 4 

 39.5 58.25 6.5 -10.75 

 -33.5 -61.75 29.5 36.25 

 -28.5 -31.75 -25.5 -7.75   22.5 35.25 -10.5 -17.75 

Standardized residuals zit       

Treatment 1 2 3 4 

 1.18 1.73 0.19 -0.32 

 -1.00 -1.84 0.88 1.08 

 -0.85 -0.94 -0.76 -0.23   0.67 1.05 -0.31 -0.53 

 

Figure 1 below shows a residual plot of the battery experiment against the four 

treatments.  

 

 
The Figure 1 indicates the most common pattern of non-constant variance in 

which the error variance increases as the mean response increases, with its 

plot showing a megaphone in shape.  

 

Another way to check unequal variances is to do a F statistic test where from 

the population, we find a ratio of the largest variance estimate to the smallest, 

smax
2/smin

2. The rule of thumb is that this ratio does not exceed three for equal 
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variances. In this example, the F value = 3152.25/557.67 = 5.65 which was 

greater than 3. Hence, a transformation of data to stabilize the variances is 

necessary. 

 

Using the treatment sample means and variances from Table 1, we have: 

 

Treatment 1 2 3 4 

Mean 
i

y
__

 562.5 804.75 225.5 245.75 

ln(
i

y
__

) 6.332 6.691 5.418 5.504 

Variance si
2 1333.67 3152.25 557.67 601.58 

ln( si
2) 7.196 8.056 6.324 6.400 

 

A plot of ln( si
2) against ln(

i
y
__

) as shown in Figure 2 below is nearly linear, so the slope 

of the curve will provide an estimate of q in equation (2).  

 

 

By taking q = 1.2684 from the gradient of the least square line, we have    

(1-q/2) = 0.366.  Hence, from the equation (2), a variance transformation is  

 

    h(yit) = (yit)0.366 

 

Since (yit)0.366 is close to (yit)0.5 and since the square root of the data values is 

perhaps more meaningful than (yit)0.366 , we will try taking the square root 

transformation. The square roots of the data are shown in Table 4. We note 

that this transformation has stabilized the variances considerably, as 

y = 1.2684x - 0.5992

R² = 0.9556
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evidenced by smax
2/smin

2 = 0.982/0.587 = 1.67 which is less than 3.  

 

 

Table 4: Transformed data 
ity  for the battery experiment  Treatment 1 2 3 4   24.536 29.377 15.232 15.330   23.000 27.258 15.969 16.793   23.108 27.803 14.142 15.427   24.187 28.983 14.663 15.100 

Mean 23.708 28.355 15.001 15.662 

Std Deviation 0.769 0.991 0.783 0.766 

Variance 0.592 0.982 0.614 0.587 

 

Checks of the other model assumptions for the transformed data also reveal 

no severe problem and so we can now proceed the analysis using these 

transformed data.  

 

It may be noted that the significance level and confidence levels will now be 

approximate, because the model has been changed based on the data. The 

transformed standard error SE = 0.745 instead of 33.60 before 

transformation.   

 

 

 

 

 

 


