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Common test statistics for suspected results and outliers – 
 

In  our  routine  analytical  works,  particularly  during  a  new  method 

development process,  we often come across analytical datasets  which 

contain  suspected  values  that  seem  inconsistent  with  the  

majority.  This observation is quite common in a set of repeated analytical 

results which broadly resemble a normal distribution. To such data, we often 

suspect that they are the outcome of a large uncontrollable variation (i.e. a 

mistake) in procedure, and they can have a large influence on classical 

statistics, especially standard deviations and variances.  

 

Data given below from a series of determination of total aflatoxins (µg/kg) in 

a moldy corn sample and also shown in Figure 1 can be taken as a typical 

example: 

 

    15.2,  24.9,  26.2,  27.2,  28.1,  30.7 

 

 

  ____|_______________|_______________|_______________|____ 

   15    20     25     30 

Figure 1:  Results of a determination repeated by six analysts. The result of 

15.2 µg/kg looks suspiciously like an outlier 

 

It is quite difficult to identify suspected values visually as outliers. Very often, 

an outlier statistic test is to be performed before further action such as 

deletion of such data or further testing, as we do not wish to delete such 

data without sound statistical justification. This is also because such 

discrepant data may actually be part of the random error system in the 

course of repeated analyses in the test method concerned.    

 

Statistical tests for outliers abound, including PaHTa’s, Chauvenet’s, Dixon’s, 

Grubbs, Cochran’s, Bartlett’s, Hartley’s, Levene’s, Thompson’s and Brown-

Forsythe’s, etc., but they somehow tend to suffer from some defects. Let us 

discuss the pros and cons of a few common tests.  

 

The simplest outlier’s test is the PaHTa’s rule which states that if, given a 

series of test values, x1, x2,…., xn  with a mean value 
__

x  and standard deviation 

s, the difference between the extreme value xi and the mean value is greater 

than 3s, then that value is taken to be a significant outlier. Such conclusion 

however can only be sound when there is a large number of data for 

consideration.  
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The Chauvenet’s test seems to treat identification of outlier more seriously as 

it states that if we have a series of test values, x1, x2,…., xn  with a mean value 

__

x  and standard deviation s, and if the difference between the extreme value 

xi and the mean value is greater than ω.s, where ω value is referred to the 

Chauvenet’s table based on the number of data n, then that particular value is 

taken to be an outlier.  By Chauvenet’s accounts, the PaHTa is to be valid only 

when the total number of data is close to n = 200. The table is shown below: 

Table 2:  Chauvenet’s ωi values against number of data, n   

n ω n ω n ω 

3 1.38 13 2.07 23 2.3 

4 1.53 14 2.10 24 2.3 

5 1.65 15 2.13 25 2.3 

6 1.73 16 2.15 30 2.4 

7 1.80 17 2.17 40 2.5 

8 1.86 18 2.20 50 2.6 

9 1.92 19 2.22 75 2.7 

10 1.96 20 2.24 100 2.8 

11 2.00 21 2.26 200 3.0 

12 2.03 22 2.28 500 3.2 

 

Another simple statistic test, Dixon’s Q test, requires the dataset to be re-

arranged in ascending order and calculate a ratio Q: 

Q  =  | suspected value – nearest value | / (largest value – smallest value)  

with the total number of values noted.  If the Q ratio is larger than the 

critical value corresponding to the same number of data in the Dixon’s table, 

then that suspected value is an outlier with either 95% or 99% confidence.  If 

the calculated Q value is found to be between the critical values of 95% and 

99% confidence table, the value is consider as a straggler and the test 

recommends to have another few repeated analyses to be done for another 

round of evaluation.   

 

Dixon’s test has the following rules to be followed: 

 

1. For values X1, X2, ….., Xn-1, Xn  where Xn is suspected to be extremely high: – For datasets of 3 through 7 values: 

Q  =  (Xn – X n-1) / (Xn – X1)  
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– For datasets of 8 through 12 values: 

Q  =  (Xn – X n-1) / (Xn – X2)     – For sets of 13 through 40 values: 

Q  =  (Xn – X n-2) / (Xn – X3) 

 

2. For values X1, X2, ….., Xn-1, Xn  where X1 is suspected to be extremely low: 

- For sets of 3 through 7 values: 

Q  =  (X2 – X1) / (Xn – X1)  

- For sets of 8 through 12 values: 

Q  =  (X2 – X1) / (Xn-1 – X1)    

- For sets of 13 through 40 values: 

Q  =  (X3 – X1) / (Xn-2 – X1) 

  

The Dixon’s table is appended below in Table 2. 

 

Table 2 : Critical Values for the Dixon Test         

Test Criteria n 95% 99%   

  3 0.970 0.994   

  D(3…7)  =  [x2 – x1] / [xn – x1] 4 0.829 0.926   

  Or 5 0.710 0.821   

  D(3…7)  =  [xn – xn-1]) / [xn – x1] 6 0.628 0.740   

         (Whichever is the greater) 7 0.569 0.680   

  8 0.608 0.717   

  D(8…12)  =  [x2 – x1] / [xn-1 – x1] 9 0.564 0.672   

  Or 10 0.530 0.635   

  D(8…12)  =  [xn – xn-1]) / [xn – x2] 11 0.502 0.605   

         (Whichever is the greater) 12 0.479 0.579   
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 13 0.611 0.697   

  14 0.586 0.670   

  15 0.565 0.647   

  16 0.546 0.633   

  17 0.529 0.610   

  18 0.514 0.594   

  19 0.501 0.580   

  20 0.489 0.567   

  21 0.478 0.555   

  22 0.468 0.544   

  23 0.459 0.535   

  D(13…40)  =  [x3 – x1] / [xn-2 – x1] 24 0.451 0.526   

  Or 25 0.443 0.517   

  D(13…40)  =  [xn – xn-2] / [xn – x3] 26 0.436 0.510   

         (Whichever is the greater) 27 0.429 0.502   

  28 0.423 0.495   

  29 0.417 0.489   

  30 0.412 0.483   

  31 0.407 0.477   

  32 0.402 0.472   

  33 0.397 0.467   

  34 0.393 0.462   

  35 0.388 0.458   

  36 0.384 0.454   

  37 0.381 0.450   

  38 0.377 0.446   

  39 0.374 0.442   

  40 0.371 0.438   

 

A problem with this simple test is that it may be foiled by the presence of a 

second outlier at either end of the value range. Indeed Dixon has tried to 

consider the second or third largest or smallest values in the Q ratio 

calculated when the dataset grows in number. 

 

The Grubbs test is a more sophisticated test for outliers than Dixon’s.  It is 

used to detect outliers in a dataset by testing for one outlier at a time. Any 

outlier which is detected is deleted from the data and the test is repeated 

until no outliers are detected.  However, multiple iterations may change the 
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probabilities of detection, and the test should not be used for small sample 

sizes of six or less because it frequently tags most of the points as outliers. 

The basic assumption underlying the Grubbs test is that, outliers aside, the 

data are normally distributed. The null hypothesis is that there are no 

outliers in the dataset.  

The test statistic G is calculated for each result xi from the sample mean 
__

x  

and standard deviation s as  

     sxxG i /||max
__

−=    

This statistic calculates the value with the largest absolute deviation from the 

sample mean in units of the sample standard deviation.  This form of the 

Grubbs test is therefore a two-tailed test. The steps taken are as follow:  

 

Step 1:  to quantify how far the outlying figure is from the other data. 

 

Calculate the ratio G as the difference between the suspected value and the 

mean divided by the standard deviation s, i.e. 

       
s

xx
G i ||

__

−
=  

The standard deviation s comes from the whole set of data, including the 

consideration of the outlying data.  Hence, one can expect the presence of 

an outlier increases the calculated standard deviation s but since the 

presence of an outlier increases both the numerator (difference between 

mean and the value) and denominator (standard deviation s of all values), the 

ratio G does not get very large.  In fact, no matter how the data are 

distributed, the G cannot get larger than: 

     
n

n )1( −
 

where n is the number of values under consideration. 

 

Step 2 : Compare the G value against the critical Grubbs G value at the 

designated confidence level, normally at P  = 0.05 with 95% confidence .   

 

If the calculated value of G is greater than the critical value in the Grubbs 

table (Table 3), then the P-value is less than 0.05, i.e. the null hypothesis 

does not hold and there is more than 95% chance that we would encounter 

an outlier so far from the others in either direction by chance alone, 

assuming all the data were really sampled from a single Gaussian or normal 

distribution.  
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We recall that the Grubbs method only works for testing the most extreme 

value in the sample.  Normally, we would calculate G for all values but only 

estimate a P-value for the Grubbs test from the most extreme value of G, as 

follows: 

 

First we calculate:   

22

2

)1(

)2(

nGn

Gnn
t

−−

−
=  

where  

n is the number of values in the sample and,  

G is calculated for the suspected outlier as shown above. 

 

Now, let us look up the 2-tailed P-value for the Student’s t-distribution table 

with the calculated value of t at (n-2) degrees of freedom, and multiply the P-

value obtained in above by n.  The result is an approximate P-value for the 

outlier test.   

 

This P-value is the chance of observing one point so far from the others if 

the data were all sampled from a Gaussian distribution.  If G is large, this P-

value can be very accurate.  For Example: 

 

Trial # Value 

G - 

value t - value 

  2-Tailed P- 

 Value calcd 

Estimated 

P-Value 

1 56.5 0.152       

2 56.2 0.419       

3 56.8 0.724       

4 56.5 0.152       

5 56.3 0.229       

6 57.0 1.105       

7 56.4 0.038       

8 57.2 1.486       

9 56.1 0.610       

10 * 55.2 2.324 4.001 0.00395 0.0395 

Mean = 56.4      

s = 0.525     

n = 10     

Critical G = 2.29     

      

Note: The 2-tailed P-value was calculated using Excel’s “=TDIST(t,df,2)” 

where “2” is for the 2-tailed P value.  

 

Hence it is concluded that the value 55.2 was an outlier with 95% confidence 

by Grubbs test with P-value being less than 0.05. 
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Table 3 : Critical G Values for Grubbs test at 95% confidence 

Critical values for G.  Calculate G as shown above. Look up the critical value of G in the 

table below, where n is the number of values in the group. If your value of G is higher than the 

tabulated value, the P-value is less than 0.05.  

n Critical G  n Critical G 

3 1.15  27 2.86 

4 1.48  28 2.88 

5 1.71  29 2.89 

6 1.89  30 2.91 

7 2.02  31 2.92 

8 2.13  32 2.94 

9 2.21  33 2.95 

10 2.29  34 2.97 

11 2.34  35 2.98 

12 2.41  36 2.99 

13 2.46  37 3.00 

14 2.51  38 3.01 

15 2.55  39 3.03 

16 2.59  40 3.04 

17 2.62  50 3.13 

18 2.65  60 3.20 

19 2.68  70 3.26 

20 2.71  80 3.31 

21 2.73  90 3.35 

22 2.76  100 3.38 

23 2.78  110 3.42 

24 2.80  120 3.44 

25 2.82  130 3.47 

26 2.84  140 3.49 

 

  

 


