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Design of Experiments – Completely randomized designs 

 

In an experiment designed to study the effect of temperature on the mean 

yield of a chemical synthesis process, five batches were produced at each of 

three temperature levels selected. The replicated batch results obtained in kg 

are as below: 

 

Temperature 

50oC 60oC 70oC 

34 30 23 

24 31 28 

36 34 28 

39 23 30 

32 27 31 

 

In experimental design terminology, the production temperature level is the 

independent variable or factor.  Because three temperatures were selected 

in correspondence to this factor, we say there are three treatments 

associated with this experiment. This chemical synthesis process therefore is 

an example of a single-factor experiment involving a quantifiable factor 

(temperature level).  

 

This chemical yield experiment is called a completely randomized design 

as this type of design requires that each of the temperature level (or 

treatment) be assigned randomly to each batch of the production.  For 

example, 50oC temperature level might be assigned on Monday, 70oC 

temperature level to the Tuesday production and 60oC on Friday, with the 

other temperature levels randomly selected in the other days and weeks that 

followed.  

 

The hypotheses we want to test in this completely randomized design are: 

 

Ho :  µ1 = µ2 = µ3 = µ 

H1 :  Not all 3 population means (with temperature factor) were equal 

 

where  

 

µj = mean of the j
th population 

 

We use analysis of variance (ANOVA) to test for the equality of means in this 

situation. In here, we need to consider two independent estimates of the 

population variance σ2: 
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� Within-treatments estimate of population variance 

� Between-treatments estimate of population variance 

 

Before we go further, it is important to know the following important 

assumptions made for ANOVA: 

 

1. For each population, the response variable is normally distributed. 

That means the daily production yield must be normally distributed at 

each temperature level; 

2. The variance of the response variable, denoted σ2, is the same for all 

the populations. That means the variance of yields must be the same for 

all three temperature levels; 

3. The observations must be independent. In this example, the daily yield 

production must be independent of each other.    

 

The formulae for the sample mean and sample variance for treatment j are as 

follow: 
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The overall sample mean, denoted 

==

x , is the sum of all the observations 

divided by the total number of observations nT. That is: 
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where  

 

     nT = n1 + n2 + ….. + nk       [4] 

 

If the size of repeats for each sample (treatment) is n, then nT = kn; in this case, 

equation [3] is simplified and reduces to: 
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In other words, whenever the sample sizes are the same, the overall sample 

mean is just the average of the k sample means. 

 

In this chemical yield example which consisted of n=5 observations, we have: 

 

Mean 

__

x  (50oC) = 33; variance s2 (50oC) = 32.0 

Mean 

__

x  (60oC) = 29; variance s2 (60oC) = 17.5 

Mean 

__

x  (70oC) = 28; variance s2 (70oC) = 9.5 

 

and, the overall mean 30
3

282933
=

++
=

==

x  

 

Within-treatments estimate of population variance 

 

Any experiment constitutes a population. The individual sample means 

obtained through the treatments are assumed to follow sampling distribution 

of population variance σ2 unless proven otherwise.  Hence, we are going to 

use ANOVA to estimate its population variance from within-treatments and 

between-treatments perspectives.   

 

When the sample sizes are equal, the within-treatments estimate of population 

variance σ2 can be obtained by computing the average of the individual sample 

variances.  Hence, for this chemical yield experiment, we obtain: 

 

 Within-treatments estimate of σ2 7.19
3

5.95.170.32
=

++
=  

This estimate of σ2 is called the mean square due to error and is denoted MSE.  

The general formula for computing MSE is: 
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The numerator in equation [6] is called the sum of squares due to error and 

is denoted SSE. The denominator of MSE is referred to as the degrees of 

freedom associated with SSE.  Hence the formula for MSE can also be stated 
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as follows: 

 

 MEAN SQUARE DUE TO ERROR 

       
kn

SSE
MSE

T −
=        [7] 

   where  

 

       ∑
=

−=

k

j

jj snSSE
1

2
)1(       [8] 

 

Hence, MSE = 19.7 and SSE = 236.  It may be noted that MSE is based on the 

variation within each of the treatments; it is therefore not influenced by 

whether the null hypothesis Ho is true.  Thus, MSE always provides an 

unbiased estimate of the population variance σ2. 

 

Between-treatments estimate of population variance 

 

If the null hypothesis is true, we can think of each of the three means at 

different temperature levels (33, 29, 28) as values drawn at random from a 

population (sampling distribution). Hence, we can use the mean and variance 

of the three mean values to estimate its overall mean and population variance.  

 

When the sample sizes are equal as in this experiment, the best estimate of 

the mean of the population is the mean or average of the sample means.  Thus, 

an estimate of the overall population mean 
==

x  is (33+29+28)/3 = 30 and its 

population variance of this mean, 
2

__

x

s  is 7.0.   

Now, because 
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Note that the between-treatments estimate of σ2 is based on the assumption 

that the null hypothesis Ho is true. In other words, each sample (treatment) 

comes from the same population and hence there is only one sampling 

distribution of 
__

x .   
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When the sample sizes are equal, this estimate of σ2 is called the mean square 

due to treatments and is denoted MSTr. The general formula for computing 

MSTr is : 
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The numerator in equation [9] is called the sum of squares due to treatments 

and is denoted SSTr.  The denominator, k-1, represents the degrees of 

freedom associated with SSTr.  Hence, the mean square due to treatments can 

be computed by the following formula: 

 

 MEAN SQUARE DUE TO TREATMENTS 
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Hence, in this example, MSTr = 35 and SSTr = 70.  If Ho is true, MSTr provides 

an unbiased estimate of σ2 but if the means of the k populations are not 

equal (i.e. Ho is false), MSTr is not an unbiased estimate of σ2 ; in fact, in that 

case, MSTr tends to overestimate σ2 .  

 

Comparing the variance estimates by the F test 

 

If the null hypothesis is true and the ANOVA assumptions are valid, the 

sampling distribution of MSTr/MSE is an F distribution with numerator 

degrees of freedom equal to k-1 and denominator degrees of freedom equal 

to nT - k.  

 

Recall also that if the means of the k populations are not equal, the value of 

MSTr/MSE will be inflated because MSTr overestimates σ2. Hence, we will 

reject Ho if: 

    ),1( 21 knvkvFcritical
MSE

MSTr
T −=−=≥  

Let us return to the chemical yield experiment and use a level of significance 

α = 0.05 to conduct the hypothesis test.  The value of the test statistic is: 
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As the estimated F value of 1.78 is less than the critical F value of 3.89, we 

conclude that Ho is true, that means there were no significant differences 

amongst the three population means.  

 

We can now write the result that shows how the total sum of squares SST is 

partitioned: 

 

       SST = SSTr + SSE 

 

This result also holds true for the degrees of freedom associated with each of 

these sums of squares, i.e. the total degrees of freedom is the sum of the 

degrees of freedom associated with SSTr and SSE. We may present the general 

form of the ANOVA table for a completely randomized design as below: ANOVA TABLE FOR A COMPLETELY RANDOMIZED DESIGNANOVA TABLE FOR A COMPLETELY RANDOMIZED DESIGNANOVA TABLE FOR A COMPLETELY RANDOMIZED DESIGNANOVA TABLE FOR A COMPLETELY RANDOMIZED DESIGN    
Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 
Mean Square F 

      

Treatments SSTr k - 1 
1−

=
k

SSTr
MSTr  

MSE

MSTr
 

      

Error SSE nT - k  
kn

SSE
MSE

T −
=   

        

Total SST nT - 1             

 

Analysis of variance and Experimental Design with Excel 

 

Microsoft Excel ® – Data Analysis Tool can be used to test for the equality of 

k population means as shown by the table below: 
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Batch Temperature    

# 
50   

Deg C  

60  

Deg C 

70  

Deg C 
   

1 34 30 23    

2 24 31 28    

3 36 34 28    

4 39 23 30    

5 32 27 31    

       

Anova: Single Factor                       

SUMMARY           

Treatments Count Sum Average Variance   

50 Deg C 5 165 33 32   

60 Deg C 5 145 29 17.5   

70 Deg C 5 140 28 9.5   

       

       

ANOVA             

Source of Variation SS df MS F P-value F crit 

Between Treatments 70 2 35 1.78 0.210 3.89 

Within Treatments 236 12 19.67                     

Total 306 14         

       

 

 

 

 


