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DOE – Two-Factor Factorial Design with replication 

 

Two-factor (or two-way) factorial design is the simplest factorial design and 

has two or more levels for each factor of interest. To simplify discussion, we 

shall restrict to only two levels for each factor treatment.  Designs which 

contain more than two levels of a factor are logical extensions of the two-

level case. In here, we will also only consider the case where there are equal 

numbers of replicates (n) for each combination of the levels of factor A with 

those of factor B.  Assumptions of normality and equal variance are taken 

valid here without outlier data and this also leads to assume that the error 

variables are independent.  

 

This factorial design is sometimes called a 22 or 2x2 (read as 2 by 2) design. 

When the “2x2” terminology is used, the first number refers to the number of 

levels of the first factor, whilst the second number refers to the number of 

levels of the second factor. On the other hand, if “22” terminology is used, 

the first number refers to 2 levels whilst the power of 2 refers to the number 

of factors. In this manner, we have 22 = 4 treatment combinations of factor A 

and factor B.    

 

It is clear that as the number of levels of each factor increases and the 

number of replications in each factor also increases, we will encounter quite 

a complex calculation. Hence, it is assume that in practice, a statistical 

software such as SPSS, MINITAB or Excel spreadsheet package will be used 

when analyzing data from such experimental design models.    

 

Let us discuss a conceptual approach for the decomposition of the total 

variation for the two-factor factorial design model with equal replication.   

 

First of all, we need to define the following terms: 

 

r = the number of levels of factor A 

c = the number of levels of factor B 

n’ = the number of values in replication for each cell 

n = the total number of observations in the experiment, i.e  n = rcn’ 

Xijk = the value of the kth observation for level i of factor A and level j of  

factor B 
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= 1,2, …, r) 
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jth level of factor A and the jth level of factor B 

 

In our previous blogs, we have noted that in the completely randomized 

design model, 

 

SST (Sum of squares total or total variation) = SSTr (Sum of squares 

among treatments or groups) + SSE (Sum of squares within treatments 

or group for random error) 

 

and in the randomized block design model, we have: 

 

SST (Sum of squares total) = SSTr (Sum of squares among treatments 

or groups) + SSB (Sum of squares due to blocks) + SSE (Sum of squares 

of random error within blocks) 

 

Similarly in this two-factor factorial design model with equal replication in 

each cell, we will have: 

 

SST (Sum of squares total) = SSTr (Sum of squares among treatments 

or groups) + SSFA (Sum of squares due to factor A) + SSFB (Sum of 

squares due to factor B +SSE (Sum of squares due to inherent random 

error) 

 

This decomposition of the total variation (SST) is best summarized in the 

following display: 
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Partitioning the Total Variation 

SST = SSFA + SSFB + SSAB + SSE 
 

 

 

 
 

Factor A Variation (SSFA)  

df = r - 1 

   

   

  

Factor B Variation (SSFB)  

df = c -1 

Total Variation (SST)                   

df = n -1  

 

 

  

Interaction (SSAB)                

df = (r-1)(c-1) 

   

  
Random Variation (SSE)     

df = rc(n' - 1) 

 

 

The total variation for factors A and B is: 
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The sum of squares due to factor A (or SSFA) represents the differences 

between the various levels of factor A and the grand mean.  SSFA is 

computed by the following equation: 
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Similarly the sum of squares due to factor B (or SSFB) represents the 

differences between the various levels of factor B and the grand mean.  SSFB 

is computed by the following equation: 
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The sum of squares due to the effect of the interaction between A and B (or 

SSAB) represents the effect of the combinations of levels of factor A and 

factor B.  SSAB is computed by the following equation: 
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And, lastly the sum of square error (or SSE) represents the differences among 

the observations within each cell and the corresponding cell mean.  SSE is 

computed by the following equation: 

 

    ∑∑∑
= = =

−=

r

i

c

j

n

k

jiijk XXSSE
1 1

'

1

2
)(      [4] 

 

The respective degrees of freedom of components are listed in the above 

figure. 

  

If each of the sums of squares is divided by its associated degrees of 

freedom, we obtain the four mean squares (MSFA, MSFB, MSAB, and MSE) as 

shown by the following equations: 

   
1−

=
r

SSFA
MSFA           [5]  

   
1−

=
c

SSFB
MSFB           [6] 

   
)1)(1( −−

=
cr

SSAB
MSAB          [7] 

 

   
)1'( −

=
nrc

SSE
MSE           [8] 

So, with these equations in mind, we can proceed to build a two-factor 

ANOVA model which calls for three distinct tests to be performed. 

 

If we assume that the levels of factor A and factor B have been specifically 

selected for analysis (rather than being randomly selected from a population 
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of possible levels), we can make the following three tests of hypotheses: 

 

1.  To test the hypothesis of no difference due to factor A 

 

Ho : µ1 = µ2 = …. = µ  

    H1 : not all µi are equal 

 

We perform a F-test statistic and obtain: 

 

    
MSE

MSFA
F =           [9] 

 

The null hypothesis is rejected at the α level of significance if  

 

    cF
MSE

MSFA
F >=          [10] 

the upper-tail critical value from an F distribution with (r-1) degrees of 

freedom in the numerator and rc(n’-1) degrees of freedom in the 

denominator.   

 

2. To test the hypothesis of no difference due to factor B 

 

Ho : µ1 = µ2 = …. = µ  

    H1 : not all µj are equal 

 

We perform a F-test statistic and obtain: 

 

    
MSE

MSFB
F =           [11] 

 

The null hypothesis is rejected at the α level of significance if  

 

    cF
MSE

MSFB
F >=          [12] 

the upper-tail critical value from an F distribution with (c-1) degrees of 

freedom in the numerator and rc(n’-1) degrees of freedom in the 

denominator.   
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3. To test the hypothesis of no interaction of factors A and B 

 

Ho : The interaction of A and B = 0 

H1 : The interaction of A and B ≠ 0 

 

We perform a F-test statistic and obtain: 

 

    
MSE

MSAB
F =           [13] 

 

The null hypothesis is rejected at the α level of significance if  

 

    cF
MSE

MSAB
F >=          [14] 

the upper-tail critical value from an F distribution with (r-1)(c-1) degrees of 

freedom in the numerator and rc(n’-1) degrees of freedom in the 

denominator.   

 

In summary, the two-factor ANOVA with replication can be presented in the 

table below: 

 

Source Degrees of 

freedom df 

Sum of 

squares SS 

Mean square 

(Variance) MS 

F value 

 

A 

 

r -1  

 

SSFA 
1−

=
r

SSFA
MSFA  

MSE

MSFA
 

 

B 

 

c - 1 

 

SSFB 
1−

=
c

SSFB
MSFB  

MSE

MSFB
 

 

AB 

 

(r – 1)(c – 1) 

 

SSAB 
)1)(1( −−

=
cr

SSAB
MSAB  

MSE

MSAB
 

 

Error 

 

rc(n’ – 1) 

 

SSE 
)1'( −

=
nrc

SSE
MSE  

 

Total n - 1 SST   

 

We shall discuss an example for the two-factor (two-way) model with 

replication in the next blog. 

 

 


