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Limit of Detection; Type I (False Positive) and Type II (False 

Negative) errors 

 

Undeniably the concept of limit of detection (LOD) has been and still is, one 

of the most controversial subject in analytical chemistry. It is vital in trace 

analysis where measurements are made at very low test analyte or property 

levels, such as in trace pesticide analysis. It is important to know what the 

lowest concentration of the analyte or property value that can be confidently 

detected by the analytical method is. 

 

The LOD is often confused with the method sensitivity. In fact, the sensitivity 

of a test method is the capability of the method to discriminate small 

differences in concentration or mass of the analyte. For example, the slope of 

a calibration curve can show the sensitivity of the method.    

 

The LOD of an analytical procedure is normally defined as the lowest amount 

of an analyte that can be reliably detected with a given analytical method, 

but not necessary quantitated as an exact value. Because of the word 

“reliably”, the LOD is itself a statistical estimate of concentration at which we 

can be fairly certain that the compound is present. Concentrations below this 

limit may not be detected.  

 

In other words, the LOD would be the lowest concentration obtained from the 

measurement of a sample (containing the component) that we would be able 

to discriminate from the concentration obtained from the measurement of a 

blank sample (a sample not containing the analyte). 

 

So, when we state “Not Detected (ND) ” for an analyte in our test report, it 

indicates that this analyte may be present below the detection limit.  But, we 

do not wish to claim the presence of the analyte when it is actually absent; 

i.e. a false positive or Type I (α ) decision error. Equally, we do not wish to 

report that the analyte is absent when it is truly present, i.e. a false negative 

or Type II (β ) decision error. 

 

The meanings of these two types of error will be clearer by the following 

illustrations. 

 

When there is no bias or systematic error in a test procedure, numerous 

repeats on the analysis of a blank sample, due to the presence of random 

error, would give concentration values distributed around zero with a given 

standard deviation σ0. At some point in this zero-concentration value 
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distribution, we can set a critical level Lc that allows us to make a decision 

whether the analyte is present or not. See the sketch below. 
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If the concentration obtained is higher than Lc hypothetically in this blank 

sample, we can state that the analyte is present in the sample but run a risk 

of falsely conclude that the analyte is actually present.  This certain 

probability, α is called type I error, indicating that we might probably commit 

a false positive.       
 

When we choose α=0.50, we say on 50% occasions, a result on the blank 

sample would give a value greater than zero. But the risk of committing a 

false positive at this Lc is too high. More logically in most situations, we 

might want to fix α = 0.05, indicating that the risk of declaring false positive 

is only 5%.  

 

If we were to prepare a sample with a concentration Lc and repeat the 

analysis several times, we would obtain a distribution of values with a mean 

value of µ = Lc, and a standard deviation of σc. As the concentration is very 

small, we can safely assume σo = σc.  See sketch below. 
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In this second round of analysis, we might declare in half of the cases that 

the analyte is not present in the sample with Lc concentration (i.e. it is not 

detected) because the concentrations are found below the critical level Lc. 

This is in contradiction to what actually happens when we analyse a sample 

with Lc concentration. Hence we are running a risk of falsely concluding that 

the analyte is not detected when in fact it is present.  This probability β is 

called type II error, indicating that we might commit a false negative error.   

 

Certainly it is not wise to put β = 0.50 at a high 50% risk in committing this 

false negative error. To reduce such risk, it will be more logical to put β = 

0.05 by deciding on a concentration level LD which gives α=0.05 in the 

sample analysis of Lc concentration. See the sketch below. 
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In here, we can safely assume that σo = σD because of small difference 

between concentration zero and LD.   It is now obvious that if the laboratory 

were to analyse samples containing LD concentration, it would be running a 

much lower risk β by stating the analyte is not detected when in fact it is 

present. This LD is known as limit of detection.     

 

Mathematically, we can write the following equations to estimate LD: 

Lc = 0 + z(1-α)σo 

  LD = Lc +z(1-β)σD = z(1-α)σo + z(1-β)σo = 2z(0.95)σo 

Where α = β = 0.05 and statistic z(0.95) = 1.645 under the one-sided normal 

(Gaussian) distribution  

 

Hence, the limit of detection LD = 0 + 2x1.645σo = 3.3σo.  
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However, if the laboratory does not run sufficient number of replicates (say, 

n<30), one has to replace the population standard deviation σ with a sample 

standard deviation s and apply the t-statistic instead of using those 

parameters in the normal distribution. In that case, we use the following 

equation: 

     LC = t(1-α, v=n-1)so  

     LD = 2 x t(1-α, v=n-1)so  

 

where n is the number of repeats and v is the degree of freedom. 

 

For some analytical instrumentation and by some learned professional 

organisations, the instrument’s signal-to-noise (S/N) ratio is being used to 

estimate the LOD. Generally S/N ≥3 is taken as the LOD.  In chromatography, 

this detection limit is the injected amount that results in a peak with a height 

at least three times as high as the baseline noise level. 
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