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Minimum measurement error at the center of linear calibration curve 
 

In any instrumental analysis, we use a series of working standards to calibrate the 

instrumental responses in terms of signals which can be in the form of absorbance, peak 

area or peak height.  To minimize calibration error, we always wish the calibration curve 

between the concentrations of the working standards (x’s) and the instrument responses 

(y’s) to be a straight line correlation in the form of y = a + bx where a is the y-intercept and 

b, the gradient of the linear regression. So, when we obtain an instrument response of an 

analyte from the sample prepared, we can calculate the amount of x from the above linear 

equation.  We know that each instrument response is actually an average of many random 

signals with a normal distribution and hence the gradient and y-intercept of the linear 

calibration curve are having certain amounts of variation as well.   

 

It is important to choose a dynamic range of the calibration curve which is right for your 

sample solution prepared for measurement.  Ideally the reading of the sample solution’s 

instrument responses lie at about the center of the straight line curve, in order to have a 

better confidence interval. The following illustration will prove this point. 

 

Suppose we have got a series of working analyte standard solutions ranging from 0.5 mg/L to 

8.0 mg/L to calibrate a UV-Visible spectrometer. The data of standard concentrations vs color 

absorbance are summarized below: 

   

Conc. C, mg/L Absorbance A 

0.5 0.045 

1.0 0.105 

2.0 0.214 

4.0 0.434 

8.0 0.813 

   

 

 

y = 0.1022x + 0.0054

R² = 0.9983
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To determine the confidence interval of the concentration of the analyte in the sample 

solution, xmeas when its instrument response in terms of absorbance, ymeas is measured, we 

use the following equation: 
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where  

n is the number of calibration points (x, y), 

t(n-2) is the Student’s t-value at (n-2) degrees of freedom, 

b is the gradient of the linear calibration curve, and, 

SE(y) is the standard error of y estimates, represented by: 
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yi,obs is the experimental observed absorbance at ith point, 

yi,cal is the calculated absorbance at ith point from the linear equation y = a + bx 

 

In this example, the following data were obtained: 

the linear equation was  y = 0.0054+ 0.1022x 

n = 5, 

SE(y) = 0.0147,  

t(n-1) = t4 = 2.78, and,  

when ymeas of a sample solution = 0.368, the xmeas = 3.55 mg/L + 0.44 mg/L 

 

Now, if we were to arbitrarily calculate a range of xmeas based on a series of ymeas and their 

respective confidence interval, we have: 

 

ymeas xmeas CI 

0.050 0.436 0.471 

0.100 0.926 0.460 

0.200 1.904 0.445 

0.300 2.883 0.438 

0.400 3.861 0.440 

0.500 4.840 0.452 

0.600 5.819 0.472 

0.700 6.797 0.500 

0.800 7.776 0.534 

 

From the above table, it is obvious that confidence intervals became narrower at the middle 

range of the calibration curve.  This is even clearer through plotting a graph of xmeas’s vs the 

respective confidence intervals CI: 
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