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Notes on a linear regression calibration curve 

 

The ability of instrumental analysis techniques to handle a wide range of analyte 

concentrations against the instrument responses indicates that the results of the sample 

concentration can be calculated, and their random errors evaluated, in a particular manner 

that differ from that used when a single measurement is repeated several times.   

 

One may prepare a series of prepared standard solutions (normally at least 5 or 6, and 

possibly several more)  in which the concentrations of the analyte are known.  These 

calibration standards are measured in the analytical instrument under the same conditions 

as those subsequently used for the test (i.e. unknown) samples.  A calibration graph is thus 

established between the known concentrations and the signals of the instrument.    

 

In this respect, we can ask several statistical questions: 

 

a) Is the calibration graph linear?  If it is a curve, what is the form of the curve?  In 

fact, although we would like to have a linearity in our calibration curve in order to 

minimize errors, we should always ask if our calibration plot obtained is really 

linear?  In other words, is there any lack-of-fit of the linearity? 

 

b) Bearing in mind that each of the points on the calibration graph is subjected to 

errors, what is the best straight line (or curve) through these points? 

 

c) Assuming that the calibration plot is actually linear, what are the estimated errors 

and confidence limits for the slope (gradient) and the y-intercept of the line? 

 

d) When the calibration plot is used for the analysis of a prepared test sample solution, 

what are the errors and confidence limits for the determined concentration? 

 

e) What is the limit of detection of the method?  That is, what is the least 

concentration of the analyte that can be detected with a predetermined level of 

confidence? 

 

Before tackling these questions in detail, we must consider a number of aspects of plotting 

calibration graphs: 

 

a) it is essential that the calibration standards cover the whole range of concentrations 

required in the subsequent analyses. With the important exception of the ‘standard 

addition method’, which is treated separately, concentrations of test samples are 

normally determined by interpolation and not by extrapolation. 
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b) it is critically important to include the value for a ‘reagent blank’ sample in the 

calibration curve.  The blank contains no deliberately added analyte, but does contain 

the same solvent, reagents used for the analysis, etc.  This blank must be treated as a 

test sample and subjected to exactly the same sequence of analytical procedures.  The 

instrument signal given by the reagent blank sample will often not be zero.  It is of 

course subject to errors, like all the other points on the calibration plot.    

 

Hence, it is wrong in principle to subtract the blank value from the other standard signal 

values before plotting the calibration graph. 

 

c) The calibration curve is always plotted with the instrumental response on the vertical 

(y-) axis and the standard concentrations on the horizontal (x-) axis.  This is because 

many of the procedures assume that all the errors are in the y-values and the standard 

concentrations (x-values) are having comparatively much smaller errors that can be 

ignored.  Hence, any result uncertainty is deemed to have come only from the normal 

distribution of the y-values obtained from the instrument concerned. 

 

 
 

A straight-line plot takes the algebraic form: 

 

    y  =  a + bx                … [1] 

 

where  b = gradient of the slope 

and    a = intercept point at y-axis (i.e. when x = 0), 

 

The individual points on the line are referred to as (x1, y1) (normally a set of the ‘blank’ values), 

(x2, y2), (x3, y3), …., (xn, yn),  i.e. there are n points altogether plotted on a calibration curve. 

 

The line of regression of y on x is normally prepared by the least square method. To do so, 

we first assume that there is a linear relationship between the analytical signals (yi) and the 

various working standard concentrations (xi).  Let’s see how we can calculate the ‘best’ 

straight line through the calibration graph points, each of which is subject to experimental 

error.   
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In here, we are making an important assumption that all the errors are in y only (i.e. 

instrument responses) and so, we are seeking the line that minimises the deviations of the y-

direction between the experimental points and the calculated line. As some of these 

deviations (technically known as the y-residuals) will be positive and some negative, it is 

sensible to seek to minimise the sum of the squares of the residuals (or errors).   

 

Hence, for a given value of xi, we can have two types of y values: 

 

 yi  (observed or experimental value of y at i th point), and  

 
i

y
∧

  (calculated value of yi from the equation y = a + bx) 

 

If we define a residual or error as the distance between the experimental value of yi and the 

calculated value of yi, i.e. 

  
iii yye

∧

−=            … [2] 

we notice that the sum of all the ei, Σei = 0, indicating that the straight line has the least 

deviation from all the plot points considered by moving in between them. In the following 

graph with exaggerated spread of the points on the curve, we can see that all the ei’s will be 

either positive or negative and the total sum should be zero if it is the best fit line.  

 

   

 

 The sum of squares of the residuals or errors, SSE is : 

 

  ∑∑
∧

−== 22
)(

iii yyeSSE                … [3]  

 

Now, the mean-square error, MSE is given by the SSE divided by its number of degrees of 

freedom (n-2), i.e. : 

y = 106.16x - 9.6872

R² = 0.955
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The standard error of the y-estimate SE(y) or standard deviation of the regression 

is defined as the square root of MSE: 
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ySE           … [5] 

 

In fact, SE(y) is an important formula in the study of error for linear regression. This can be 

seen in the following series of statistical equations in various forms: 

 

1. The Pearson’s linear correlation coefficient, r is given by: 
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2. The gradient of the curve or slope is : 
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 with standard deviation                 
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We report a 95% confidence level of the gradient as b + t(n-2) SD(b) with a df of (n-2). 

 

3. a, the y-intercept of the line is given by: 
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 with standard deviation SD(a) as: 
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4. Commonly in the calibration curve, we use the measured y-value to estimate an x-value.  

Once the slope (gradient) and intercept of a straight line calibration curve has been 

established, it is easy to calculate an x-value (e.g. observed value) from a measured y-

value (e.g. instrument response value). 

 

The 95% confidence limits of the estimated x-value are given by the following equation: 
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where R is the number of repeated measurements of y. If there is only one measurement, 

we then have  
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It is to be noted that the following assumptions have been made for this linear correlation, 

namely: 

 • Normality of error  (i.e. random error, following the Normal distribution function) • Homoscedasticity (which requires that the variation around the line of regression be 

constant for all values of x, i.e. the error varies by the same amount when x is a low 

value as when x is a high value.) • Independence of errors for x. 

 

The graph below illustrates the confidence limits on an example of calibration curve: 
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The next article will show why we need to prepare a suitable range of working standard 

solutions for a calibration curve in order to minimize the error of the output, i.e. the test 

results of our unknown sample solution. For example, if we were to have prepared a wide 

range of standard metal concentrations from 10 µg/L to 500 µg/L for a metal analyte 

measurement of only 20 µg/L in a water sample solution by the ICP technique, the 

uncertainty of this measurement is going to be significantly large.   

 


