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Comparing your lab results with the others by one-way ANOVA 

You may have developed a new test method and in your method validation process you would 

like to check the method’s ruggedness by conducting a simple cross-check program by 

comparing your own test results against the results provided by the other collaborating peer 

laboratories on a similar sample.  What you may have done is to send them one or more similar 

homogeneous samples, request them to follow your method closely and report its repeatability 

data after their lab analyses.   

When all the data are collated, you can carry out an analysis of variance (ANOVA) to see if all 

the data are significantly comparable or not.   In fact,  ANOVA  is an extremely powerful 

statistical technique  which can be used to separate and estimate the different causes of 

variation.  In this case, the causes of variation are the ‘laboratory’ factor and the random error 

in measurement of each participating laboratory. Since there is only one controlled factor, the 

statistical approach is called one-way ANOVA. 

Let’s see an example to demonstrate how one-way ANOVA can be carried out. 

The following table show the results of 4 similarly prepared samples received by 4 different 

laboratories in a simple cross-check programme organised for the measurement of zinc content 

in water in mg/L by the FAAS method: 
 

Trial No. Lab 1 Lab 2 Lab 3 Lab 4 

1 103 102 97.4 107 

2 99 102 95.3 110 

3 101 106 99.5 109 

Mean, mg/L 101 103.3 97.4 108.7 

         Overall Mean :  102.6 mg/L  

The above table shows that the mean values for the 4 samples (from a same source) reported 

by the participating laboratories were apparently different.   But, were they really so? 

We know that because of random error, even if the true value which we are trying to measure, 

say 100 mg Zn/L is unchanged, the sample mean may vary from one laboratory to another.   
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ANOVA therefore, tests whether the difference between the samples reported by the 4 

laboratories is too great to be explained by the random error alone. First of all, let’s do a 

hypothesis testing as below: 

Ho  :  all the samples tested by the laboratories were reporting comparable population mean 

results with a variance  σo
2
, i.e.  µ1 = µ2 = µ3 = µ4 

H1 :  all mean results were not comparable, i.e. µ1 ≠ µ2 ≠ µ3 ≠ µ4 

On the basis of this hypothesis, the data variance σo
2
  can be estimated in 2 ways:   

 

*    one involving the variation within each laboratory, and, 

*    the other, the variation between the laboratories. 

 

(i) Within lab variation 

 

Remember that variance is the square of standard deviation.  Hence, upon calculation, we have: 

Variance of Lab 1  =  4.00 

Variance of Lab 2  =  5.33 

Variance of Lab 3  =  4.41 

Variance of Lab 4  =  2.33 

 

Averaging these values gives: 

Within-sample estimate of σo
2 

 = (4.00+5.33+4.41+2.33)/4 = 4.02 

This estimate has 8 degrees of freedom, v [each sample estimate had (3-1) or 2 degrees of 

freedom and there were 4 laboratories]. 

 

(ii) Between-lab variation 

 

Since the samples analyzed by the 4 laboratories were all drawn from a population (one source) 

which has population variance σo
2
 , their average of all the samples analyzed should come from 

this  population with variance  
n

o

2σ
 ( where square of 

n

oσ
  is the variance of the population). 

(Recall the well known Central Limit Theorem equation :  
n

zx
σ

µ ±=
__

) 

Thus, if the null hypothesis Ho is true, the variance of the means of the samples analyzed by 

these laboratories gives an estimate of  σo
2
 /n.   
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In this example, we have : 

Lab 1 101.0 

Lab 2 103.3 

Lab 3 97.4 

Lab 4 108.7 

Mean of Labs, mg/L 102.6 

Number of labs (n) 4 

Degree of freedom 3 

Std deviation (SD) 4.724 

Lab mean variance = (SD) squared 22.314 

 

That means :  σo
2
 / 3  =  22.314  (where n = 3 measurements for each lab) 

Therefore, the between-sample (laboratory) estimate of  σo
2
 (mean square) =  22.314 x 3  =  66.94 

Note :  this estimate of  σo
2
  does not depend on the variability within each laboratory, because it is 

calculated from the lab means.  

In this case, the number of degrees of freedom v is (4 – 1) or 3 and the mean square is 66.94 and so the 

sum of squared terms is  3 x 66.94 = 200.8 

Now, let’s summarize our calculations so far: 

Within-lab mean square     = 4.02 with df v = 8  

Between-lab mean square =  66.94 with df v = 3   

If our Ho is correct, these 2 estimates of σo
2
 should not differ significantly, or else, for H1, the 

between-lab estimate of σo
2
 will be greater than the within-lab estimate because of between-

lab variation. 

To test if it is significantly greater, a one-tailed F-test is used: 

 F3,8  =  66.94 / 4.02  =  16.7 

From the F-table, we find that the critical value at F3,8  is 4.07 with 95% confidence.  Since the 

calculated value of F is greater than this critical value, the null hypothesis Ho is rejected, i.e. 

the laboratory means do differ significantly.  In other words, the proposed analytical method 

may not be ‘rugged’ enough and does not seem to be reproducible by all the participating 

laboratories.  
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If we were to use the Data Analysis Tool of Microsoft Excel® spreadsheet under the ANOVA 

Single Factor to analyse the above data, we should get the following results which are exactly 

the same as described above based on the first principle: 

ANOVA: Single Factor 

SUMMARY 

Groups Count Sum Average Variance 

Lab 1 3 303.000 101.000 4.000 

Lab 2 3 310.000 103.333 5.333 

Lab 3 3 292.200 97.400 4.410 

Lab 4 3 326.000 108.667 2.333 

ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Labs 200.827 3 66.942 16.656 0.00084 4.07 

Within Labs 32.153 8 4.019 

Total 232.98 11         

 

Another question: which lab or labs were the root cause for non-comparable results?  Were 

they all significantly different amongst themselves? 

To answer this, we can rearrange the means of the 4 labs in increasing order and compare the 

difference between adjacent values with a quantity called the least significant difference (LSD), 

which has the following expression: 

   
n

stLSD nh

2
)1( ××= −  

where  s  is the within-lab estimate of σo
2
 

 h = number of factor (labs in this case) 

 n = number of repeats in each factor 

and  h(n-1) is the number of degrees of freedom of this estimate. 
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In the above example, the sample means arranged in increasing order of size are: 

Lab 3 Lab 1 Lab 2 Lab 4 

97.4 101.0 103.3 108.7 

 

The degree of freedom v = 4(3-1) = 8 and hence tv= 8  = 2.306.   

The least significant difference therefore is  2.306  x √4.02  x  √(2/3) with 95% confidence, giving  

3.78.   

Now, difference of Lab 3 and Lab 1 = 101.0 – 97.4 = 3.6 

          difference of Lab 1 and Lab 2 = 103.3 – 101.0 = 2.3 

          difference of Lab 2 and Lab 4 = 108.7 – 103.3 = 5.4 

Therefore when we compare this LSD value with the differences between the means, we note 

that : 

- the mean of Lab 4 differs significantly from those of Lab 1,2 and 3; 

- the mean values of Lab 1, 2 and 3 do not differ significantly from each other. 

 

 

 

 

 


