Basic statistical tools for analytical laboratories

Chapter 6 Significance (Hypothesis) Testing

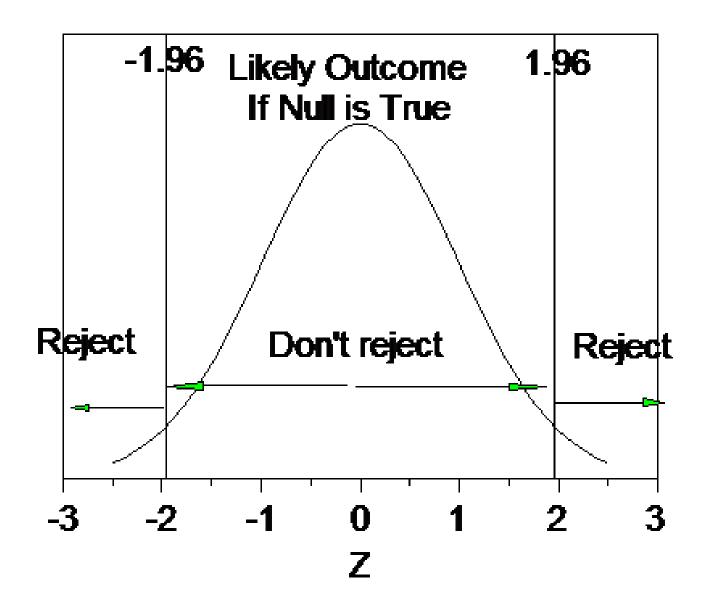
- Very often, our scientific problem is not so much the estimation of a population parameter but is to make decisions and conclusions on the data we have collected.
- A statistical hypothesis is a statement or assumption concerning one or more populations.
- A test statistic is a statistical procedure that leads us to the truth or falsity of a hypothesis made.

- A test statistic is the basic form of ANOVA (Analysis of Variance)
- To test if there is any significance difference between:
- Two standard deviations
- Two means or experimental data
- Test result against the 'true' value
- Important for checking result bias and significance of spiked recoveries, because all measurements should be free from systematic error.

- A Null hypothesis H_o refers to any hypothesis that we want to test : the rejection of H_o leads to the acceptance of an alternative hypothesis, denoted by H₁
- A null hypothesis \rightarrow an exact value of a parameter, and an alternative hypothesis allows for the possibility of other values.
- Always begin by assuming H_o is true until proven otherwise by the test statistic.

- Example:
- H_o : $\mu = 30 \text{ mg/L}$
- H_1 : $\mu \neq 30 \text{ mg/L}$
- Draw one of the 2 conclusions after a test statistic:
- 1) Reject H_o and accept H₁
- 2) Accept H_o is true

- Steps of significance testing:
- Null H_o : no significant difference between 2 values, a = b at $\alpha = 0.95$ (or 95%) probability level (i.e. on average, a 1 in 20 chance to reject the null hypothesis when it is in fact true)
- Alternate H₁ : there is a difference, or lesser or larger between them, *a > b*, *a < b* or *a* ≠ *b*
- Carry out a test statistic, e.g. *F* test or *t* test



- Steps of significance testing (contd):
- Evaluate the test statistic result against the given critical value of the test from the relevant table
- Make a decision and conclusion
- Note: $a \neq b$: two-sided test table
- *a > b* : one-sided test table
 - *a* < *b* : one-sided test table

F-Test

- To test for any significant difference between random errors as variances $(s^2 \text{ or } \sigma^2)$ in *a* population
- $F = s_1^2 / s_2^2 > 1$
- with degrees of freedom v_1 and v_2
- Compare the *F* result against the critical values in the *F*-Table
- *F* test can also be applied on two populations with two variances:

$$F = \frac{s_{a}^{2} / \sigma_{a}^{2}}{s_{b}^{2} / \sigma_{b}^{2}}$$

F-Test : Example

Trial #	Analyst A, pp	m Analyst B, ppm
1	14.5	15.6
2	13.2	14.1
3	13.8	15.9
4	13.9	14.8
5	14.8	16.2
Mean =	14.0	15.4
Std Dev =	0.627	0.858
Variance =	0.393	0.737
<i>F</i> -value =	1.875	
		Ho: $Var(A) = Var(B)$ H1: $Var(A) \neq Var(B)$ (2 Tail)
F(4,4) Critical 2-tail	9.605	H1: $Var(A) \neq Var(B)$ (2-Tail) Var(A) < Var(B) (1-Tail) Verdict : NO significant
F(4,4) Critical 1-tail	6.388	differences between Var(A) and Var(B). 10

Student's t-Tests

• 1) Test against a reference or assigned value:

 $\mu = x + t (s / \sqrt{n})$

• or,

$$t = |\mu - x| \sqrt{n/s}$$

• Example....

t-Test against reference value

Certified ref value μ = Replicated analysis :

Repridated driarysis .		
x, mg/L		
239		
256		
265		
246		
242		
236		
247.3		
11.094		
6		
0.589		
2.571		

250.0 mg/L

 $t = | \mu - x | \sqrt{n / s}$ As *t*-value < *t* (critical), the mean value is not significantly different from the certified value.

Student's t-Tests

• 2) To compare two mean results of 2 analysts, or labs, or methods



where

 $S_p = \sqrt{\{[s_1^2(n_1 - 1) + s_2^2(n_2 - 1)]/(n_1 + n_2 - 2)\}}$

• Example

t-Test for two means

Trial #	Analyst A, ppm	Analyst B, ppm
1	14.5	15.6
2	13.2	14.1
3	13.8	15.9
4	13.9	14.8
5	14.8	16.2
Mean =	14.04	15.32
Std Dev =	0.627	0.858
Variance =	0.393	0.737
Sp^2 =	0.565	Verdict: The mean value of
t-value =	2.055	Analyst A is significantly different from that of
t(8) Critical =	2.306	Analyst B.