Training and consultancy for testing laboratories.

Microbiological counting is normally done after incubating a portion of prepared sample on a sterilized culture medium at stipulated temperature over time.  Very often, microbial growth rate data are heteroscedatic, or non-normally distributed. The heteroscedatic data tend to have unequal variability (scatter) across a set of independent or predictor variables.  The presence of such data can be demonstrated graphically as following some kind of cone shape on a scatter graph, as in Figure 1 below:


The outcome of data analysis would be seriously flawed if we were to directly take the counts for statistical evaluation like what we would normally do for a set of chemical analysis data.

To overcome this, we may consider microbial growth data as being log-normally distributed to cater for the physiological or biochemical based mechanism involved.

Many microbiologists in their recovery studies would have noticed that the % recoveries can never be found satisfactory after dividing the experimental colony counts with the known inoculated number of bacteria. They tend to be in the region of 70% or so.  However, once the data are logarithmic transformed to the base of 10, the relative standard deviation RSD’s obtained are more acceptable, as shown in the figure below:

Figure 2:  The % recoveries of colony forming units (cfu)/ml

Log Recovery

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: